Сверхузкополосные температурностабильные фильтры на ПАВ с поперечносвязанными резонаторами разработки фирмы VECTRON International

ВВЕДЕНИЕ

Фильтры на поверхностных акустических волнах (ПАВ) с поперечно-связанными резонаторами (ПСРФ) разрабатываются фирмой VECTRON International (его отделением **VI Telefilter, Телтов, Германия**) для реализации сверх узких полос пропускания *BW3*=0,05-0,2 % на частоты в интервале от 70 до 1380 МГц. Такие фильтры обладают высокой избирательностью до *UR* =45-55 дБ в полосе заграждения, хорошим коэффициентом прямоугольности АЧХ до *SF* =1,5-1,8 и малыми вносимыми потерями *IL* =2,5-6,5 дБ.

1. Конструкции фильтров с поперечной акустической связью резонаторов

Из известных на сегодняшний день пьезоэлектрических материалов для устройств на поверхностных акустических волнах (ПАВ) пьезокварц обладает наилучшей температурной стабильностью. Так, для повернутых срезов семейства *yxl/* 42°- *yxl/* 30° температурный коэффициент частоты кварца изменяется от ТКЧ= 0 x10⁻⁶/°C для ST- среза *yxl/* 42° 45' (при нулевой толщине металлической пленки) до ТКЧ=-(0,036-0,04) x 10⁻⁶/°C² для среза *yxl/* 30°, что на несколько порядков меньше, чем для температурно-стабильных срезов другого материала -танталата лития с ТКЧ=- (18-30) x10⁻⁶/°C. Поскольку кварц является слабым пьезоэлектриком, то его коэффициент электромеханической связи КЭМС=0,01-0,016% значительно уступает коэффициенту электромеханической связи КЭМС=5-6 % для танталата лития , что ограничивает ширину реализуемой полосы пропускания кварцевых фильтров на ПАВ при приемлемых потерях. Поэтому кварцевые фильтры на ПАВ принципиально более узкополосны ,чем фильтры на танталате лития , и теоретически позволяют реализовать полосы пропускания кварцевых фильтры на танталате лития , и теоретически позволяют реализовать полосы пропускания кварцевых фильтры на танталате лития , и теоретически варцевых фильтров резко возрастают требования к точности настройки парциальных частот резонаторов , входящих в их состав (до 0,005-0,02%).

Указанные ограничения заставляют разработчиков VECTRON искать более приемлемые для проектирования и изготовления базовые структуры кварцевых фильтров на ПАВ. Наиболее оптимальными структурами для создания узкополосных и стабильных в широком диапазоне температур фильтров ПАВ являются цепочечные схемы на основе резонаторов с поперечной акустической связью (ПСРФ) или Transversal Coupled Resonator Filters (TCRF).

Основой такого фильтра ПСРФ служит одновходовый резонатор, содержащий пьезоэлектрическую (чаще всего, кварцевую) подложку, входной встречно-штыревой преобразователь (ВШП) и две отражательные решетки по бокам ВШП (рис.1).

Рис. 1. Одновходовый резонатор на ПАВ : а- конструкция ; б-эквивалентные схемы

При подаче электрического сигнала входной ВШП генерирует две ПАВ, распространяющиеся в прямом +*X* и обратном -*X* направлениях. Обе ПАВ попадают на соответствующие решетки, отражаются и формируют стоячую волну в акустическом волноводе, образованном входным ВШП и отражательными решетками. Из-за дифракционной расходимости часть акустической энергии вытекает за пределы волновода. Если близко на подложке расположить второй аналогичный волновод , между ними возникает поперечная акустическая связь, позволяющая сформировать частотную характеристику такого элементарного звена уже как полосового фильтра, аналогично фильтру из двух связанных электрических контуров (рис.2). Регулируя акустическую связь изменением расстояния между резонаторами, можно формировать частотную характеристику элементарного двухрезонаторного звена фильтра в полосе пропускания. Также как и для электрических контуров, при слабой связи АЧХ двухрезонаторного акустического звена имеет плавную форму, близкую к гауссовской. При критической связи удается получить плоскую вершину АЧХ с более широкой полосой ; при сильной связи появляются два экстремума, что позволяет максимально расширить полосу пропускания звена.

Вход

а

Рис.2. Два резонатора на ПАВ с поперечной акустической связью (а) и их эквивалентные схемы (б, в). Синий цвет- антисимметричная поперечная мода, красный цвет – симметричная поперечная мода

Расширить полосу пропускания фильтра можно, используя три резонатора с поперечной акустической связью в акустическом звене (рис.3) и разнося частоты возникающих экстремумов АЧХ.

Дальнейшее увеличение числа резонаторов с поперечной акустической связью к расширению полосы пропускания звена фильтра практически не приводит, т.к. при числе резонаторов четыре и более дополнительные экстремумы в АЧХ сливаются.

Помимо основных мод (симметричной и несимметричной – рис. 2), распространяющихся вдоль направления оси X, вследствие отражений волны от краев акустического волновода возникают дополнительные поперечные моды с распределением энергии вдоль оси Y, которые приводят к появлению паразитных откликов в АЧХ звена на частотах, выше центральной, определяемой периодами ВШП и решеток, т.е. в высокочастотной полосе заграждения фильтра. С ростом числа акустически связанных резонаторов увеличивается и количество отражающих границ волноводов, в первую очередь, образованных контактными площадками фильтра. Поэтому количество и уровень паразитных откликов в полосе заграждения, вызванных поперечными модами, также увеличивается, что является дополнительным ограничением использования многорезонаторных структур. Поэтому двухрезонаторное звено является элементом, наиболее часто используемым для построения более сложных структур полосовых фильтров.

С целью подавления паразитных откликов и улучшения избирательности применяется комбинированная связь : поперечная акустическая связь в звене из пары резонаторов и электрическая связь между двумя или тремя звеньями (рис. 4). В качестве элемента связи между звеньями могут быть использованы внешние емкости или индуктивности. В разработках VECTRON чаще используется индуктивный элемент связи , что не всегда удобно (например, фильтр TFS 75E).

Рис.4. Фильтр из четырех резонаторов с комбинированной акустоэлектрической связью : (а) – конструкция двухзвенного фильтра ; (б, в) - трансформация элементов связи; (г) - эквивалентная схема связанных резонаторов

2. Схемы согласования фильтров на резонаторах с поперечной акустической связью с нагрузками

Входное и выходное сопротивления ПСРФ на кварце составляют обычно $|Z_{out}| = 0,2-2,0$ кОм в зависимости от средней частоты и относительной полосы пропускания. Поэтому для согласования фильтра со стандартной нагрузкой 50 Ом приходится использовать цепи трансформации импеданса 50 Ом в высокоомное входное сопротивление фильтра или , наоборот, цепи трансформации высокоомного выходного сопротивления фильтра в низкоомную нагрузку. Типичные аксиальные схемы согласования сверхузкополосных фильтров поперечно связанных резонаторах на кварце разработки фирмы VECTRON приведены на рис. 5.

Рис.5. Аксиальные схемы согласования сверхузкополосных ПСРФ :

а- с индуктивным элементом электрической связи между звеньями фильтра;

б- с оптимизацией крайних резонаторов звеньев

Избирательность двухзвенного ПСРФ на кварце с комбинированной акустоэлектрической связью составляет обычно 45-50 дБ и ограничена, в первую очередь, электромагнитной наводкой со входа на выход как внутри корпуса фильтра, так и по печатной плате, на которой этот фильтр расположен. Для улучшения избирательности до 60-65 дБ и более рекомендуется использовать балансное включение ПСРФ (рис. 6), позволяющее частично компенсировать электромагнитную наводку (например, фильтр модели TFS 433A).

Рис.6. Балансные схемы согласования сверхузкополосных ПСРФ

3.Области применения фильтров с поперечной связью резонаторов разработки VECTRON International

Фильтры на ПАВ основе резонаторов с поперечной акустической связью (ПСРФ) обычно используются в интервале частот от 70 до 1000 МГц. Из-за малости коэффициента электромеханической связи кварца, для построения высокодобротных резонаторов требуется использовать не менее 200-400 электродов в каждой из отражательных решеток, что приводит к росту их протяженности в 5-10 раз по сравнению с решетками резонаторов на танталате лития. Поэтому нижняя рабочая частота ПСРФ определяется габаритами резонаторов и толщиной металлической пленки, необходимой для создания эффективных отражателей ПАВ. Верхняя рабочая частота ограничена потерями на распространение ПАВ в кварце, резко возрастающими на частотах 1000-1200 МГц и выше. Благодаря использованию высокодобротного электро-очищенного кварца и прецизионной фотолитографии, VECTRON International удалось создать ПСРФ с приемлемыми потерями на частоты до 1387 МГц (фильтр модели TFS 1387А, рис.7).

Рис.7. Частоты и относительные полосы пропускания ПСРФ, реализованные в изделиях фирмы VECTRON

Типичные вносимые потери ПСРФ разработки VECTRON составляют *IL* =2,2-6,8 дБ и определяются, первую очередь, количеством звеньев в фильтре, качеством оптимизации импедансев крайних резонаторов фильтра с импедансами нагрузок (примыкающих звеньев или согласующих цепей), а также неизбежными потерями в согласующих цепях. Для снижения последних в согласующих цепях желательно использовать высокодобротные катушки индуктивности с Q=60-100.

Минимальная полоса пропускания ПСРФ определяется величиной температурного ухода средней частоты в рабочем интервале температур и точностью воспроизведения центральных частот резонаторов в используемом технологическом процессе. Для изделий VECTRON минимальная полоса пропускания составляет около *BW3min* =0,07 % или , например , около 70 кГц на частоте 92 МГц (фильтр модели TFS 92B).

Максимальная полоса пропускания ПСРФ ограничена величиной акустической связи между резонаторами при заданной неравномерности АЧХ в полосе пропускания и не превышает BW3max=0,187% для двухрезонаторных акустически связанных звеньев и BW3max=0,287% для трехрезонаторных акустически связанных звеньев при приемлемой неравномерности АЧХ (рис.7).

Как уже указывалось, ПСРФ обладают высокой избирательностью до *UR*=50-60 дБ в полосе заграждения, хорошим коэффициентом прямоугольности АЧХ *SF*=1,5-1,8 и малыми вносимыми потерями *IL*=2,5-6,5 дБ.

В ПСРФ разработки VECTRON преимущественно используются металлокерамические корпуса, удобные для монтажа на поверхность. В зависимости от рабочей частоты и количества звеньев в фильтре, габариты корпусов изменяются от SMD 14,0x8,5 мм на частотах 70-100 МГц и SMD 13,3x6,5 мм для 100-200 МГц до SMD 5,0x5,0 мм для частот 300-600 МГц и SMD 3,8x3,8 мм для 800-1300 МГц (рис. 8).

Габариты, мм

Перечисленные свойства сверхузкополосных и температурностабильных ПСРФ обеспечивают широкий круг их разнообразных применений:

- в измерительной технике для построения синтезаторов частот и анализаторов спектра, очистки спектра генераторов;

- в трактах промежуточной частоты аналоговых и цифровых систем мобильной и сотовой связи : радиотелефонах различных стандартов , радиоудлинителях , пейджерах и т.д. (Таблица 1);

- в трактах промежуточной частоты приемников систем наземной морской и спутниковой беспроводной связи ;

- в приемниках систем дистанционного управления объектами : электронных замков , охранных систем , автомобильной сигнализации;

- в медицинской аппаратуре;

- в системах распознавания целей и наведения на цель и т.д.

При этом в автомобильной сигнализации используются как фильтры со стандартной полосой пропускания 0,07-0,1 %, так и расширенной до 0,2-0,25 % полосой. Последнее необходимо для увеличения функций устройства, например, формирования не только звукового и светового сигналов тревоги, но и сигнала для дистанционного запуска двигателя и т.д.

4. Реализация сверхузкополосных и температурностабильных ПСРФ в фирме VECTRON

Ниже приведены таблицы с основными параметрами фильтров на основе резонаторов с поперечной акустической связью – **ПСРФ** или Transversal Coupled Resonator Filters - **TCRF** разработки **VI Telefilter**, г. Телтов, Германия, предназначенные для применений в различных областях, а также некоторые типичные частотные характеристики фильтров для этих областей. При необходимости, достаточно "щелкнуть" ссылку на интересующий конкретный фильтр в той или иной таблице настоящего обзора, чтобы увидеть через Internet Explorer частотные характеристики этого и других ПСРФ, размещенных на сайте <u>www.vectron.com</u>

Таблица 1

Стандарты мобильной , сотовой и беспроводной связи , распространенные в различных странах мира

Standard	Rx MHz	TX MHz	#Users	RF BW MHz	IF BW MHz
Analog Cell	ular (FDMA))			
AMPS	869-894	824-849	832	25	30
ETACS	916-949	871-904	1240	33	25
NTACS	860-870	915-925	400	10	12.5
NMRT450	463-468	453-458	200	5	25
NMT900	935-960	890-915	1999	25	12.5
Digital Cell	ular (TDMA)				
IS-54/-136	869-894	824-849	832X3	25	30
IS-95	869-894	824-849	20X798	25	1250
(CDMA)					
GSM	935-960	890-915	124x8	25	200
PDC	810-826	940-956	1600x3	16	25
	1429-	1477-	1600x3	24	25
	1453	1501			
Digital Cord	less/ PCN (TDMA/TDD)			
CT2 &	864/868 8	40	4	100	CT2+
944/948					
DECT	1880-		10X12	110	1728
	1990				
PHS	1907	1895	300X4	12	300
DCS1800	1805-	1710	750X16	75	200
(FDD)	1880	1785			

Применение	Модель	Частота, МГц	Полоса, МГц	Неравно- мерность АЧХ, дБ	Вносимые потери, дБ	Неравно- мерность ГВЗ, нсек	Корпус , мм
Space	TFS70BA	70	0.07	1.0	6.0		13.3x6.5 LCC
Military	<u>TFS75E</u>	75	0.015	1.0	12.0	3000	14.1x8.5 LCC
Military _	<u>TFS121B</u>	121.05	0.05	0 1.0	3.0		7.0x5.0 LCC
Military	<u>TFS162A</u>	162.2			5.0		9.3x7.3 LCC
Military	<u>TFS240M</u>	240	0.24		5.5	2000	5.0x5.0 LCC
Military	<u>TFS243E</u>	243	0.05	1.0	3.0		7.0x5.0 LCC

Фильтры для военных и космических применений

Рис. 9. Частотные характеристики фильтра модели TFS 70BA

Рис. 11. Частотные характеристики фильтра модели TFS 243E

Фильтры для измерительного оборудования

Применение	Модель	Частота, МГц	Полоса, МГц	Неравно- мерность АЧХ, дБ	Вносимые потери, дБ	Неравно- мерность ГВЗ, нсек	Корпус , мм
Medical	<u>TFS80G</u>	80	0.010	1.5	4.0		13.6x6.8 LCC
Measurement	<u>TFS280A</u>	280.46	0.07		5.0	2000	7.0x5.0 LCC
Test Equipment	TFS433AA	433.92	0.60		3.5		3.8x3.8 LCC
VCSO	<u>TFS622</u>	622.11	0.14		6.0	600	7.0x5.0 LCC
Test Equipment	<u>TFS1200</u>	1200	0.20	1.0	6.0	100	3.8x3.8 LCC

Рис. 12.Частотные характеристики фильтра модели TFS 433AA с балансной схемой согласования для измерительных систем

Применение	Модель	Частота, МГц	Полоса, МГц	Неравно- мерность АЧХ, дБ	Вносимые потери,дБ	Неравно- мерность ГВЗ, нсек	Корпус , мм
ISM	<u>TFS315</u>	315	0.03		7.0	700	5.0x5.0 LCC
ISM	<u>TFS429</u>	429.2	0.125	1.0	3.0		3.8x3.8 LCC
ISM	<u>TFS433F</u>	433.32	0.05		6.0		7.0x5.0 LCC
ISM	<u>TFS433K</u>	433.42	0.15		5.0		7.0x5.0 LCC
ISM	<u>TFS433L</u>	433.92	0.44		3.5		5.0x5.0 LCC
ISM	<u>TFS433P</u>	433.92	0.44		3.5		3.8x3.8 LCC
ISM	<u>TFS433V</u>	433.92	0.36		3.0		3.8x3.8 LCC
ISM	<u>TFS433X</u>	433.92	0.36		3.0		3.8x3.8 LCC
ISM Wide	<u>TFS433Z</u>	433.92	0.76		3.0		5.0x5.0 LCC
ISM Wide	<u>TFS434B</u>	434.46	0.64	3.0	4.0		5.0x5.0 LCC
ISM	<u>TFS868C</u>	868.3	0.50		5.5		3.8x3.8 LCC
ISM	<u>TFS868D</u>	868.3	0.60		5.5		5.0x5.0 LCC
ISM	<u>TFS868H</u>	868.3	0.60	3.0	3.8		3.8x3.8 LCC
ISM	<u>TFS868N</u>	868.3	0.60	3.0	3.8		3.8x3.8 LCC
ISM	<u>TFS868B</u>	868.35	0.40		5.5		5.0x5.0 LCC
ISM	<u>TFS868</u>	868.39	0.60		4.7		5.0x5.0 LCC
ISM	TFS868A1	868.92	0.50		5.5		3.8x3.8 LCC
ISM	<u>TFS869H</u>	869.21	0.02		7.0		5.0x5.0 LCC
ISM	TFS915L	915.0	0.70	3.5	5.5		3.8x3.8 LCC

Фильтры для систем дистанционного управления объектами (диапазон ISM)

Рис.14. Частотные характеристики фильтра модели TFS 434 при аксиальной схеме согласования

Рис.15. Частотные характеристики фильтра модели TFS 433Z с расширенной полосой и балансной схемой согласования

Рис.16. Частотные характеристики СВЧ фильтра модели **TFS 868** для автомобильной сигнализации

Таблица 5

Фильтры для систем пейджерной связи

Применение	Модель	Частота, МГц	Полоса, МГц	Неравно- мерность АЧХ, дБ	Вносимые потери, дБ	Неравно- мерность ГВЗ, нсек	Корпус , мм
PagerRF	<u>TFS456B</u>	456.15	0.28		5.0		9.0x5.0 LCC
PagerRF	TFS456C	456.49	0.28		5.0		9.0x5.0 LCC
PagerRF	<u>TFS469</u>	469.99	0.28		5.0		9.0x5.0 LCC

Таблица 6

Фильтры для систем мобильной и сотовой связи , навигационных систем

Применение	Модель	Частота, МГц	Полоса, МГц	Неравно- мерность АЧХ, дБ	Вносимые потери, дБ	Неравно- мерность ГВЗ, нсек	Корпус , мм
AMPS	<u>TFS86C</u>	86.46	0.03	2.0	5.0	10000	11.0x5.0 LCC
AMPS	<u>TFS86</u>	86.85	0.03	1.5	4.0	10000	13.0x6.0 LCC
AMPS	<u>TFS86A</u>	86.85	0.03	1.5	4.0	10000	11.0x5.0 LCC
AMPS	TFS86A-1	86.85	0.03	1.5	4.0	10000	11.0x5.0 LCC
GSM,DCS,PCS	<u>TFS211</u>	211	0.20		6.5	500	9.0x7.0 LCC
GSM,DCS,PCS	<u>TFS225</u>	225	0.16		5.0	1500	7.0x5.0 LCC
GSM,DCS,PCS	<u>TFS246H</u>	246	0.24	1.5	5.0	1200	7.0x5.0 LCC
GSM,DCS,PCS	TFS246H2	246	0.24	1.5	5.0	1200	7.0x5.0 LCC
GSM,DCS,PCS	TFS246H4	246	0.18	1.5	5.0	1200	7.0x5.0 LCC
Wireless LAN	<u>TFS248H</u>	248.6	0.20	1.0	6.0	500	13.3x6.5 LCC
GSM	<u>TFS270A-1</u>	270	0.18		5.0	2000	7.0x5.0 LCC
GSM	<u>TFS270B</u>	270	0.18		5.0	2000	5.0x5.0 LCC
GSM	<u>TFS270C</u>	270	0.18		5.0	2000	5.0x5.0 LCC
GSM	<u>TFS276</u>	276	0.24	1.5	5.0	1200	7.0x5.0 LCC
GSM BaseStation	<u>TFS309</u>	309.6	0.27		4.1		5.0x5.0 LCC
GSM,DCS,PCS	<u>TFS311A</u>	311	0.15	1.5	5.0	1200	7.0x5.0 LCC
Digital Radio	<u>TFS315H</u>	315	0.30	1.0	2.5		3.8x3.8 LCC
LMDS	<u>TFS322</u>	322.5	0.28		6.5	2000	5.0x5.0 LCC
GSM,DCS,PCS	<u>TFS336</u>	336	0.18		8.0	1200	9.0x7.0 LCC
GSM,DCS,PCS	<u>TFS360A</u>	360	0.14	1.5	5.0	2000	5.0x5.0 LCC
WiMAX	<u>TFS380P</u>	380	0.33		6.5	2000	5.0x5.0 LCC

GSM,DCS,PCS	TFS400C1	400	0.14		6.5	2000	5.0x5.0 LCC
GSM,DCS,PCS	<u>TFS400H</u>	400	0.14		6.5	2000	3.8x3.8 LCC
GSM,DCS,PCS	<u>TFS400K</u>	400	0.16		6.5	1000	5.0x5.0 LCC
GSM,DCS,PCS	<u>TFS426</u>	426.4	0.13	1.5	5.5	1200	5.0x5.0 LCC
GSM,DCS,PCS	<u>TFS440</u>	440	0.20		6.5	2000	5.0x5.0 LCC
Basestation	<u>TFS500</u>	500	0.20	2.0	5.0	-	3.8x3.8 LCC
GPS	<u>TFS1387</u>	1387	1.00	2.2	5.0	-	5.0x5.0 LCC

Рис.17. Частотные характеристики ПЧ фильтра модели **TFS 211** для аналоговых систем сотовой связи

Рис.18. Частотные характеристики ПЧ фильтра модели TFS 380P для WiMAX

Рис.18. Частотные характеристики ПЧ фильтра модели для аналоговых систем сотовой

Рис.19. Частотные характеристики фильтра модели **TFS 1387** для навигационной системы GPS

Таблица 7

Применение	Модель	Частота, МГц	Полоса, МГц	Неравно- мерность АЧХ, дБ	Вносимые потери,дБ	Неравно- мерность ГВЗ, нсек	Корпус , мм			
Wireless Communication	<u>TFS112R</u>	112	0.01	1.5	5.0		13.6x6.8 LCC			
Wireless Communication	<u>TFS121</u>	121.5	0.05		5.0		11.0x5.0 LCC			
Repeater	<u>TFS156C</u>	156.8	0.05		5.0	·	9.0x7.0 LCC			
Wireless Communication	<u>TFS160B</u>	160.62	0,02		5.0		9.0x7.0 LCC			
Wireless Communication	<u>TFS179</u>	179.55	0.09		5.0		9.0x7.0 LCC			
Wireless Communication	<u>TFS215A</u>	215	0.15	2.0	5.0	1200	9.3x7.3 LCC			

Фильтры для беспроводных систем связи

Wireless Communication	TFS220F	220	0.10		5.2		7.3x5.3 LCC
Wireless Communication	<u>TFS224</u>	224	0.10		5.2		7.3x5.3 LCC
Wireless Communication	<u>TFS243</u>	243	0.20		5.	1500	9.0x7.0 LCC
Wireless Communication	<u>TFS245C</u>	245.76	0.24	1.5	5.0	1200	7.0x5.0 LCC
Wireless Communication	<u>TFS300</u>	300	0.28		6.5	2000	5.0x5.0 LCC
Wireless Communication	<u>TFS345A</u>	345	0.20		3.5		5.0x5.0 LCC
Wireless Communication	<u>TFS433R</u>	433.92	0.16		6.5	2000	5.0x5.0 LCC
Wireless Communication	<u>TFS434</u>	434	0.40		3.5		5.0x5.0 LCC
Wireless Communication	<u>TFS450A</u>	450	4.00		4.5		3.8x3.8 LCC
Wireless Communication	<u>TFS451A</u>	451.25	0.09	1.0	3.0		5.0x5.0 LCC
Wireless Communication	<u>TFS471A</u>	471.55	0.28		5.0		9.0x5.0 LCC
Wireless Communication	TFS471A-1	471.55	0.28		5.0		9.0x5.0 LCC
Wireless Communication	<u>TFS471B</u>	471.55	0.20		3.5		7.0x5.0 LCC
Wireless Communication	<u>TFS471C</u>	471.55	0.15		5.0		9.0x5.0 LCC
Wireless Communication	<u>TFS600</u>	600	0.03		6.5		7.0x5.0 LCC
Wireless Communication	<u>TFS1220</u>	1220	0.10	1.0	6.0	100	3.8x3.8 LCC

Рис.21. Частотные характеристики фильтра модели TFS 243

Рис.23. Частотные характеристики фильтра модели TFS 1200