РАДИОЧАСТОТНЫЕ УСИЛИТЕЛИ МОЩНОСТИ НА ПОЛЕВЫХ ТРАНЗИСТОРАХ КОМПАНИИ POLYFET RF

Усиление мощности радиочастотных сигналов представляет собой актуальную и трудно реализуемую задачу из-за противоречивых требований одновременного обеспечения широкополосности, экономичности и линейности при высоком уровне мощности. Достижения компании Polyfet RF показывают, что эта проблема может быть решена за счет новых технических решений одновременно в области полупроводниковых материалов и в области конструктивной реализации малогабаритных широкополосных цепей согласования.

Компания Polyfet RF Devices (США) специализируется в области производства полевых транзисторов радиочастотного диапазона с 1985 года [1]. Сегодня она изготавливает полупроводниковые полевые транзисторы со структурой "металл-оксид-кремний" с изолированным затвором по запатен-

Л.Белов

тованной технологии двойной боковой диффузии (LDMOS) или двойной вертикальной диффузии (VDMOS). Компания выпускает транзисторы и усилители для военных и гражданских применений с выходной мощностью до 600 Вт на частоте 100 МГц, до 300 Вт на частоте 175 МГц и до 25 Вт на частоте 1500 МГц. При этом энергетическая эффективность (КПД) достигает 70%. Рассмотрим подробнее современное состояние и перспективы применений изделий этого класса.

Транзисторы, выполненные по технологии LDMOS, отличаются высокими значениями усиления K_P и коэффициента полезного действия η , малым тепловым сопротивлением "переход-корпус" $R_{\text{тпк}}$, широким динамическим диапазоном линейности и малой емкостью области сток-затвор $C_{\text{сз}}$ (табл.1). Транзисторы, выполняемые по технологии VDMOS, характеризуются высоким входным сопротивлением, повышенным

Таблица 1. Параметры транзисторов, выполненных по технологии LDMOS

Модель	Р _{вых} , Вт	f _{max} , МГц	К _Р , дБ	η, %	R _{T IIK} , °C/BT	S _{зи} , A/B	С _{сз} , пФ	I _{c нас} , A	E _n , B	Особенность
LR501	175	500	13	50	0,44	4,8	7,5	30	28	1+1; Фл
LR804	120	1000	10	45	0,5	3,2	4	22	28	4+4; Фл
LR604	40	1500	10	35	0,55	2	3,2	16	28	4+4; Фл
LK141	60	1000	10	44	0,9	1	0,7	5,5	50	1+1; Фл
LY942	600	80	19	73	0,18	7	3,5	48	50	2+2; Фл
L8801P	13	1000	10	40	5	0,8	1	5,5	28	1; ПМ

Примечание. 1 — одиночный транзистор; 1+1 — две транзисторные структуры для двухтактной схемы; 2+2 — по две транзисторных структур для двухтактной схемы; 4+4 — по четыре транзисторных структур для двухтактной схемы; ПМ — прибор для поверхностного монтажа; Фл — прибор фланцевой конструкции.

Таблица 2. Параметры транзисторов и усилительных модулей, выполненных по технологии VDMOS

Модель	Р _{вых} , Вт	f _{max} , МГц	К _Р , дБ	η, %	R _{т пк} , °C/Вт	S _{зи} , A/B	С _{сз} , пФ	I _{с нас} , А	E _n , B	Особенность
SX501	350	175	16	55	0,34	9	15	47	28	1+1; Фл
SR703	150	500	8	55	0,65	3,6	9	21	28	3+3; Фл
SP204	15	1000	10	45	3,4	1,2	2,4	5,6	28	1; Фл
S8222	4	850	10	50	10	0,6	5	4,6	12,5	1; Фл
MHCV01	10	20-1000	30	15	-	_	-	_	28	М, СШП; Зк
MLCQ02	30	30-512	35	15	-	-	-	-	28	М; 2к; ВУ

Примечание. 1 — одиночный транзистор; 1+1 — две транзисторные структуры для двухтактной схемы; 3+3 — по три транзисторных структур для двухтактной схемы; Фл — прибор фланцевой конструкции; М — модуль с коаксиальными соединителями; СШП — сверхширокая полоса частот; ВУ — высокое усиление; 2к — двухкаскадный на 50 Ом по входу и выходу; 3к — трехкаскадный на 50 Ом по входу и выходу; 3к — трехкаскадный на 50 Ом по входу и выходу.

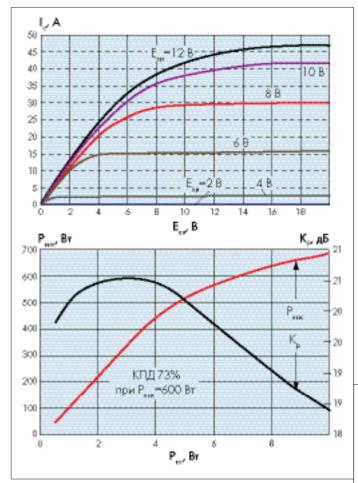


Рис. 1. Выходная Рвых (а) и амплитудная КР (б) характеристики 600-Вт транзистора LY-942

напряжением питания E_n , высокой выходной мощностью $P_{\text{вых}}$, устойчивостью по отношению к самовозбуждению (табл.2).

В качестве примера рассмотрим характеристики транзистора LY-942, изготовленного по технологии LDMOS. Он предназначен для формирования радиочастотных сигналов мощностью до 600 Вт и усилением до 21 дБ при КПД до 73% на частоте до 80 МГц в составе двухтактной (Push-Pull) схемы включения. На рис.1 показаны его выходная I_c (E_{cw}) и амплитудные $P_{Bыx}$ (P_{Bx}) и K_P (P_{Bx}) характеристики. Емкость Ссз изменяется от 15 пФ при E_{cu} = 5 В до 7 пФ при E_{cu} = 50 В. Ток стока при нулевом смещении не превышает 2 мА; максимально допустимое значение коэффициента стоячей волны КСВН составляет 13:1, напряжения сток-исток — 110 В, рассеиваемой мощности — 1 кВт, температуры перехода — 200°С. Сниже-

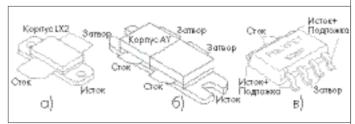


Рис. 2. Варианты корпусов для однотактной (а), двухтактной (б) схем включения и корпуса для поверхностного монтажа (в)

ние коэффициента передачи КР при малой входной мощности Рвх объясняется работой в режиме класса В с целью достижения высокого КПД.

Транзисторы выпускаются во фланцевой конструкции с однотактной (рис.2а) или двухтактной (рис.2б) схемой включения, а также в корпусе для поверхностного монтажа (рис.2в). При повышенной мощности в каждом плече двухтактной схемы размещается параллельно по два, три или четыре транзистора.

Высокие показатели по выходной мощности, полному КПД и широкополосности достигаются не только за счет применения прогрессивных полупроводниковых технологий, но и благодаря усовершенствованной схемотехники цепей питания, согласованию полных сопротивлений и переходу от однотактной схемы к двухтактной. Компания предоставляет множество вариантов реализации цепей питания, в частности, с использованием трансформаторов Рутроффа на коаксиальной линии с одной заземленной точкой. На рис.3 показан пример конструкции широкополосного (f=20-1000 МГц) трехкаскадного (транзисторы SP201, SQ201 и LQ801) усилителя модели ТВ215 с выходной мощностью до 30 Вт при КПД от 15 до 55%.

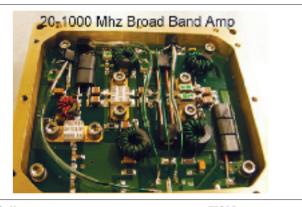


Рис.3. Конструкция широкополосного усилителя ТВ215 с выходной мощностью до 30 Вт при полосе частот 20—1000 МГц и коэффициенте передачи 30 дБ

Компания Polyfet RF предоставляет подробные радиочастотные характеристики и таблицы S-параметров выпускаемых транзисторов, а также модели внутренних параметров транзисторов для программных пакетов P-spice и ADS, а для некоторых изделий — принципиальные и монтажные схемы построения усилителя с согласующими и блокировочными элементами.

Наряду с широкой номенклатурой транзисторов компания выпускает ряд модульных конструкций усилителей мощности для гражданских и военных применений. На рис.4 представлен усилительный модуль МНСV01. В сложных условиях эксплуатации по военным нормативам модуль в полосе частот 20—1000 МГц при входной мощности 50 мВт обеспечивает выходную мощность 25 Вт, полный КПД 15%, интермодуляционные искажения по двухчастотной методике -25 дБ, допустимый КСВН 10:1. Напряжение питания модуля составляет 28 В и ток — 2,2 А В нем предусмотрена возможность быстрого (менее чем за 10 мс) управле-

Рис.4. Модуль усилителя МНСV01 с полосой частот 20—1000 МГц, выходной мощностью до 25 Вт, коэффициентом усиления 30 дБ и с быстрым управлением выходной мощностью

ния выходной мощностью за счет вариации напряжения до 10 В при токе до 1 мА.

Официальный представитель компании Polyfet RF Devices в России — ООО "Радиокомп" [2].

Рассмотренная продукция компании Polyfet RF Devices — пример успешной практической реализации комплексной задачи создания мощных твердотельных усилителей радиочастотного диапазона с высокими энергетическим КПД и коэффициентом усиления при допустимых интермодуляционных искажениях, способных функционировать в сверхширокой относительной полосе частот с возможностью быстрого управления выходной мощностью.

ЛИТЕРАТУРА

1. сайт фирмы Polyfet RF Devices – www.polyfet.com. 2. сайтофициального представителя фирмы Polyfet RF в России – ООО Радиокомп – www.radiocomp.net.