ВЧ/СВЧ-изделия

компании Linwave Technology

Несмотря на присутствие значительного числа зарубежных фирмпроизводителей ВЧ- и СВЧ-радиокомпонентов на российском рынке, для потребителей всегда представляют интерес компании, предлагающие широкий и разнообразный спектр изделий. Взаимодействие с такими компаниями позволяет их клиентам комплексно решать существующие технические задачи и сопутствующие организационные вопросы. В статье представлена продукция компании Linwave Technology [1].

Николай ЕГОРОВ

Модули повышающих преобразователей частоты

Linwave Technology выпускает широкую линейку высококачественных модулей повышающих преобразователей частоты (block up-converters, BUC) для оборудования систем спутниковой связи (рис. 1). Модули преобразователей частоты используются совместно с твердотельными усилителями мощности или с усилителями на ЛБВ. Небольшие размеры и вес, а также невысокое энергопотребление позволяют объединять преобразователь и усилитель мощности в одном корпусе. Данные по преобразователям частоты приведены в таблице 1.

Усилители

В продукции компании весьма широко представлены усилители разных типов, выполненные в виде модулей. Модели изготавливаются для частот от 10 МГц до 40 ГГц с помощью дискретных компонентов и монолитных СВЧ интегральных схем. Группа широкополосных усилителей была недавно дополнена сверхширокополосным усилителем с диапазоном рабочих частот от 5 до 40 ГГц (рис. 2). В таблице 2 приведены характеристики широкополосных усилителей.

Рис. 1. a) Конвертер С-диапазона; б) компактный мощный модуль конвертера LW30-110264/110265

Таблица 1. Повышающие преобразователи частоты

Тип, серия	Входная/выходная частота, ГГц	P1dB (вых.), дБм	Коэффициент усиления для слабого сигнала, дБ	Коэффициент шума, дБ	Уровень паразитных составляющих, дБн	Напряжение питания, В	Размеры, мм / вес, г
Конвертер С-диапазона LW30-140118	0,95-1,525 / 5,85-6,425	10	8-12	≤18	—60 при P1dB (вых.) 0 дБм	15	125×85×25 / 450
Конвертер X-диалазона LW30-150137	0,95-1,45 / 7,9-8,4	10	8-12	≤18	—60 при P1dB (вых.) 0 дБм	15	125×85×25 / 450
Конвертер Ки-диапазона LW30-140117	0,95-1,45 / 14-14,5	10	8-12	≤18	−60 при P1dB (вых.) 0 дБм	15	125×85×25 / 450
Конвертер смещенного Ки-диапазона LW30	0,95-1,45 / 12,75-13,25	10	8-12	≤18	−60 при P1dB (вых.) 0 дБм	15	125×85×25 / 450
Конвертер расширенного Ки-диапазона LW30-140116	0,95-1,7 / 13,75-14,5	10	8-12	≤18	−60 при P1dB (вых.) 0 дБм	15	125×85×25 / 450
Конвертер DBS-диапазона LW30-150138	0,95-1,75 / 17,3-18,1	10	8-12	≤18	—60 при P1dB (вых.) 0 дБм	15	125×85×25 / 450
Конвертер Ка-диапазона	0,950-1,9 / 29-30	≤10	0-10	≤18	—65 при P1dB (вых.) 0 дБм	5	150×100×30 / 500
Конвертер Ка-диапазона низкой мощности	1-2 / 29-30	≥0	Коэффициент преобразования 0 дБ	-	—60 при P1dB (вых.) —20 дБм	8	115×64×15,5 / -
Мощный конвертер Ка-диапазона	0,95-1,45 / 29,5-30; 1-2 / 30-31	>42 в режиме насыщения	>50	15	-60	±12	360×205×64 / 4500
Трехдиапазонный конвертер LW30-160151	0,95-1,525 / 0,85-6,425; 0,95-1,45 / 7,9-8,4; 0,95-1,7 / 13,75-14,5	10	8-12	≤18	—60 при входе —20 дБм	15	250×140×30 / 1500
Компактный мощный модуль конвертера LW30-110264/110265	0,95-1,45 / 7,9-8,4; 0,95-1,7 / 13,75-14,5	42,5	50	16	-60	±12	190×90×50 / 1600
Сверхминиатюрный конвертер Nano BUC	0,95-1,45 / 7,9-8,4; 0,95-1,7 / 13,75-14,5	≤10	10	15	—65 при P1dB (вых.) —10 дБм	12-15	70×50×25 / —

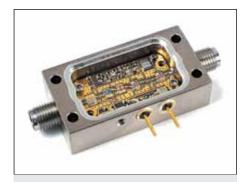


Рис. 2. Сверхширокополосный усилитель LWA90207

Рис. 3. Твердотельный усилитель для диапазона 2,45 ГГц

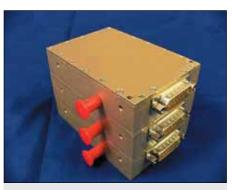


Рис. 4. Усилитель-драйвер Ku-диапазона LW10-130106

О компании Linwave Technology

Английская компания Linwave Technology была основана в 2003 году. Она занимается разработкой и производством широкого спектра ВЧ- и СВЧ-компонентов, модулей, устройств и систем. Значительное внимание компания уделяет выпуску относительно мощных радиотехнических модулей: разнообразных усилителей, повышающих преобразователей частоты, источников СВЧ-сигналов, устройств для тактических систем связи и РЛС.

Среди компонентов весомое место в продукции Linwave Technology занимают ограничители и детекторы мощности, прежде всего в корпусах QFN, а также диоды разных типов. Выпускаются СВЧ-переключатели и матричные коммутационные системы на большое число каналов.

Изделия компании используются в промышленности, медицинской и автомобильной технике, системах спутниковой связи, военнотехнической сфере.

Компания Linwave Technology сертифицирована в системе ISO9001:2008.

Таблица 2. Широкополосные усилители

Тип, модель	Диапазон рабочих частот, ГГц	Коэффициент усиления для слабого сигнала, дБ	Коэф- фициент шума, дБ	P1dB (вых.), дБм	Уровень паразитных составляющих, дБн	Напря- жение питания, В	Размеры, мм
4-диапазонный усилитель LWA90230, C, X, Ku и DBS диапазоны	5,7-18,4	34	6	23	-70	15	25,4×58,2×12,25
Сверхширокополосный усилитель LWA90207	5-40	22	<9,5	12	-60	±12	40×20×10
Широкополосный усилитель LWA90206	18-40	35	<7	13	-60	±12	40×20×10
Широкополосный усилитель LWA90212	12-18	30	<5,5	20	-70	±12	49×20×10
Широкополосный усилитель LWA90211	2-12	35	<3,2	20	-70	±12	40×20×10
Широкополосный усилитель	8-18	60	-	20	-	20	100×30×20
Широкополосный усилитель	18-40	30	-	12	_	12	40×20×10

Таблица 3. Твердотельные усилители мощности

Диапазон рабочих частот, ГГц	Коэффициент усиления для сла- бого сигнала, дБ	Коэф- фициент шума, дБ	P1dB (вых), дБм	Уровень паразитных составляющих, дБн	Потребляемая мощность	Размеры, мм
0,03-0,55	30	8	46	—20 (гармонический)	28 B, 7 A	220×150×80
0,42-0,45	20	-	45	—25 (гармонический)	110-240 B	корпус для стойки 2U, 19"
2,42-2,48	60	8	50	-50	28 B, 15 A	200×120×30
5,85-6,425	60	8	50	-50	10 B, 60A	250×200×30
5,85-6,425	60	8	46	-50	10 B, 25A	220×150×30
7,9-8,4	60	8	50	-50	10 B, 70A	250×200×30
7,9-8,4	50	8	47	-50	10 B, 25A	230×150×30
12,75-13,25	40	8	43	-50	10 B, 18A	200×150×30
13,75-14,5	50	8	45	-50	10 B, 35A	200×150×30
17,3-18,1	40	8	38	-50	10 B, 5A	150×100×30
28-31	40	6	35	-40	7 B, 7A	150×100×30
29,5-31	60	15	42 в режиме насыщения	-60	7 B, 25 A; -12 B, 0,2 A	200×200×36

Таблица 4. Усилители-драйверы

Тип, модель	Диапазон рабочих частот, ГГц	Коэффициент усиления для слабого сигнала, дБ	Коэф- фициент шума, дБ	P1dB (вых.), дБм	Диапазон контроля коэффициента усиления, дБ	Напряжение питания, В	Размеры, мм / вес, г
Усилитель С-диапазона	5,85-7,075	27-33	6	15	≥20	15	122×66×22 / 400
Усилитель Ки-диапазона LW10-130106	13,75-14,5	28-32	6	22	≥20	15	100×65×22 / 400
Усилитель DBS-диапазона	17,3-18,4	25-31	6	14	≥20	15	96×66×22 / 400

Выходная мощность твердотельных усилителей мощности доходит до значения в 100 Вт (50 дБм) (рис. 3). Для оптимального функционирования в конечных изделиях пользователей такие модели выполняются на основе технологий LDMOS, GaAs и GaN. Все устройства содержат схемы температурной компенсации и аварийной сигнализации. Таблица 3 содержит данные по твердотельным усилителям мощности.

Усилители-драйверы предназначены для совместного использования с твердотельными усилителями и усилителями на ЛБВ высокой мощности (рис. 4). Драйверы обе-



Рис. 5. МШУ S-диапазона

спечивают высокую линейность, стабильность и контроль коэффициента усиления при выполнении в относительно компактном корпусе. Дополнительные возможности заключаются в частотной подстройке коэффициента усиления и реализации удаленного управления. Характеристики усилителейдрайверов приведены в таблице 4.

Узкополосные и широкополосные малошумящие усилители выпускаются для частот от 30 МГц до 40 ГГц (рис. 5). При необходимости разрабатываются модели с бо́льшим динамическим диапазоном. Для защиты МШУ от сильных мешающих воздействий на его входе ставят ограничитель мощности.

Таблица 5. Малошумящие усилители

Тип, модель	Диапазон рабочих частот, ГГц	Коэффициент усиления для слабого сигнала, дБ	Коэффициент шума, дБ	Р1dВ (вых.), дБм	Напряжение питания, В	Размеры, мм
Усилитель S-диапазона	2,7-3,1	35	1,7	20	20	109×55×19,5
Усилитель LWA 11278	0,03-0,55	20-40	0,7	10; 14; 18	8-28	40×80×20
Широко- полосный	2-12	25	4	20	12	30×20×10
усилитель	9-12	20	4	17	12	80×50×20

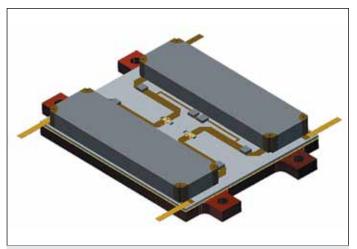


Рис. 6. Общий вид усилителя типа Pallet

Рис. 7. Многодиапазонный приемо-передающий модуль LW10-110259

Таблица 6. Приемо-передающие модули для тактических систем связи

Тип, модель	Диапазон рабочих частот, МГц; модуляция	Мощность в канале передачи, дБм	Уровень гармоник в канале передачи, дБн	Коэффициент шума МШУ, дБ	Напряжение питания, В	Размеры, мм / вес, кг	Особенности
Многодиапазонный приемо-передающий модуль LW10-110259	30-512; ЧМ и ФМ	43	-60	0,8	9-36	7,62×6,35×17,78 / 1,136	Для наземных и морских систем. Высота использования— до 4,5 км
Приемо-передающий модуль LW10-700199	370-470; TDMA, 4M	Мощность P1dB 43	-50	1	9-36	7,62×6,35×17,78 / 1,136	Для наземных и морских систем. Высота использования— до 4,5 км

Также производятся модели МШУ для военных приложений. Данные по МШУ содержатся в таблице 5.

Усилители мощности типа Pallet выполняются в виде бескорпусных модулей разных размеров, что обеспечивает удобство их интегрирования в конечные изделия заказчиков (рис. 6). В усилителях для реализации широкой рабочей полосы, обеспечения высокой выходной мощности и КПД применяется технология GaN. Модели имеют рабочие частоты 0,5–2,5 и 7,9–8,4 ГГц; их выходная мощность — до 50 Вт.

Приемо-передающие модули для тактических систем связи

Модули предназначены для работы вместе с полудуплексным радиооборудованием и ретрансляторами в трудных условиях эксплуатации, при повышенной вибрации и ударных нагрузках (рис. 7). Эти устройства могут использоваться как самим человеком в носимом варианте, так и устанавливаться на различных мобильных объектах. Характеристики устройств приведены в таблице 6.

Помимо этого, компания выпускает многоканальные усилители, разрабатываемые с учетом специфических требований заказчиков. Многоканальные усилители, как правило, являются малошумящими. Типовые приложения — радары с ФАР и системы тестирования. К примеру, в эту группу входит широкополосный 15-канальный усилитель с диапазоном 8-18 ГГц.

Изготавливаются также ограничивающие усилители. Так, ограничивающий усилитель LWA10242, функционирующий на частотах 16,25–16,75 ГГц, в режиме насыщения при входной мощности от 1 до 10 дБм обеспечивает выходную мощность 3-3,25 дБм.

Мощные источники СВЧ-сигналов

Для различных заказчиков Linwave Technology выпускает источники фиксированных частот, с перестройкой по частоте

Рис. 8. Мощный источник X-диапазона

и модуляцией в диапазоне частот 0,5-40 ГГц (рис. 8). Типовая выходная мощность от 0 до 50 дБм. Модули источников сигналов с более высокой мощностью включают в себя твердотельный усилитель. В таблице 7 приведены характеристики мощных источников СВЧ-сигналов.

Также изготавливаются компактные модули источников нескольких тактовых сигналов с очень низким уровнем фазового шума для радаров. В источниках используются как внешние, так и внутренние эталонные сигналы. Частота выходного тактового сигнала — 10, 100 и 1000 МГц. К примеру, фазовый шум на частоте 100 МГц составляет -137 дБн/Гц при отстройке 100 Гц и -178 дБн/Гц при отстройке 100 кГц. Уровень негармонических паразитных составляющих равен -80 дБн.

Модули для радиолокационных станций

Компания имеет существенный опыт разработки и выпуска модулей радаров разных типов: импульсных, с частотной модуляцией и доплеровских для частот до 24 ГГц (рис. 9). Типовые приложения: обнаружение целей, измерение расстояния и скорости, предот-

Таблица 7. Мощные источники СВЧ-сигналов

Тип, модель	Диапазон рабочих частот, ГГц	Выходная мощность, дБм	Уровень паразитных составляющих, дБн	Уровень гармоник, дБн	Потребляемая мощность	Размер, мм	Назначение, особенности
Источник высокой мощности	Х-диапазон	46	-	-40	10 B, 25 A	200×200×30	Для спутниковых систем и медицинского оборудования
Источник Ки-диапазона высокой мощности	14-14,5	45 (P1dB)	-50	-30	10 B, 35 A	200×150×30	Системы электронной борьбы средней мощности
Источник ISM-диапазона высокой мощности	2,42-2,48	50 (P1dB)	-50	-30	20 B, 15 A	200×120×30	Промышленное и медицинское оборудование

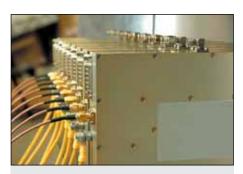


Рис. 9. Импульсный трансивер для РЛС

вращение конфликтных ситуаций в авиации. Linwave Technology также обладает определенным опытом обработки принятой радиолокационной информации. Данные по радиолокационным модулям представлены в таблице 8.

СВЧ-переключатели и матричные коммутаторы

Изготовление СВЧ-переключателей и коммутационных матриц осуществляется с помощью PIN-диодов, MMIC и электромеханических схем.

Компания выпускает линейку матричных переключателей с количеством входов/выходов от 4×4 до 12×12 (рис. 10). В матричных системах комбинируются электромеханические и твердотельные переключатели. Для всех матриц диапазон рабочих частот составляет 0–512 МГц, а максимальная мощность на канал равна 50 Вт. Управление осуществляется с помощью микропроцессора с передней панели или дистанционно через последовательный интерфейс.

Таблица 8. Модули для РЛС

Тип, модель	Диапазон рабочих частот, ГГц	Время изменения частоты, мс	Выходная мощность, дБм	Коэффициент шума приемника, дБ	Уровень гармоник, дБн	Потребляемая мощность	Размеры, мм
Модуль с непрерывной ЧМ	24,15-24,35	2	13	10	-20	12 B, 0,5 A	150×100×25
Импульсный трансивер	5,2; полоса 150 МГц	Длительность импульса — 1-1000 мкс	40	5	-50	12 B, 5 A	200×180×30

Для матричного коммутатора с количеством входов/выходов 12×12 вносимые потери <2 дБ; развязка между каналами — 60 дБ; КСВН <1,5; количество циклов переключения для каждого канала — минимум 107. Данные по СВЧ-переключателям приведены в таблице 9.

Помимо переключателей, Linwave Technology предлагает компактный широкополосный двухканальный селекторный модуль, устанавливаемый на входе приемных систем. В модуле используется два широкополосных СВЧ-канала и двухканальный низкочастотный пассивный делитель мощности. Каждый из СВЧ-каналов имеет два входа, которые могут независимо подключаться к одному из двух выходов. Также оба входа можно комбинировать и подключать к каждому выходу. Диапазон радиочастот составляет 0,5-18 ГГц, а диапазон частот делителя мощности равен 0,5-2 ГГц. Коэффициент шума — 10 дБ. Время переключения радиоканалов — максимум 100 нс. Вес устройства — 150 г.

Ограничители мощности и детекторы в корпусах QFN

Широкополосные ограничители мощности в корпусах QFN — это относительно но-

вая линейка продукции Linwave Technology (рис. 11). Ограничители выпускаются в двух вариантах: без усилителя и с дополнительным МШУ для частот от 20 МГц до 20 ГГц. На рис. 12 показана типовая зависимость выходной мощности от входной для частоты в 100 МГц. Характеристики ограничителей мощности приведены в таблице 10.

Детекторы СВЧ в корпусах QFN рассчитаны на рабочие частоты 1-18 ГГц, имеют неравномерность характеристики ± 1 дБ; чувствительность 800 мВ/мВт (входная мощность — 20 дБм) и максимальную непрерывную входную мощность 20 дБм.

Детекторы мощности с коаксиальными соединителями рассчитаны на частоты 18–42 ГГц. Динамический диапазон равен –40...+15 дБм; минимальный детектируемый сигнал составляет –40 дБм; максимальная

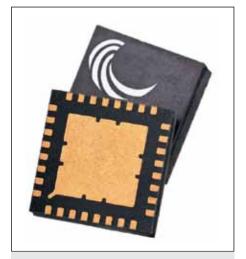


Рис. 11. Ограничитель мощности в корпусе QFN

Таблица 9. СВЧ-переключатели

Тип	Диапазон рабочих частот, ГГц	Время переклю- чения	Вносимые потери, дБ	Развязка, дБ	Выдер- живаемая мощность, дБм	Управляющее напряжение, В	Размеры, мм
PIN-переключатель SPDT	Х-диапазон	1 мкс	1,2	30	47	-	80×90×30
PIN-переключатель SP6T	2-6	50 нс	1,5	30	15	±12	60×100×20
Релейный переключатель SP6T	DC — 550 МГц	10 мс	0,5	-	46	±12	200×80×25
Релейный переключатель SPDT	DC — 550 МГц	-	1	50	46	±12	60×80×25

Рис. 10. Матричный коммутатор 12×12

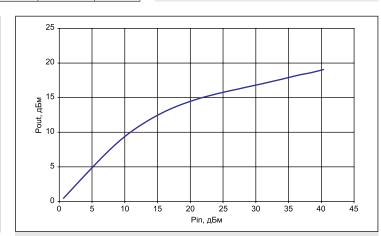


Рис. 12. Типовая зависимость выходной мощности от входной для ограничителя

неравномерность характеристики ±3 дБ; редельная мощность — 20 дБм в непрерывном режиме и 26 дБм в импульсном.

ВЧ- и СВЧ-диоды

В эту категорию компонентов входят диоды Ганна (рис. 13), а также детекторные, ограничительные и смесительные диоды. Диоды изготавливаются в виде винтов, мини-вставок, корпусов с полосковыми выводами и для поверхностного монтажа, мини-полостей, а также в бескорпусном варианте. Характеристики диодов Ганна приведены в таблице 11.

Смесительные диоды, применяемые для понижающего и повышающего преобразования частоты, имеют рабочий диапазон 30-100 ГГц, максимально допустимую непрерывную/импульсную мощность 60/150 мВт,

Рис. 13. Диоды Ганна в корпусе в виде винта

Таблица 10. Ограничители мощности в корпусах QFN

Тип, модель	Диапазон рабочих частот, ГГ ц	Выходная мощность, дБм	Максимальные вносимые потери, дБ	Максимальная непрерывная входная мощность, дБм	Обратные потери по входу/выходу, дБ	Пороговая мощность (Р1dB), дБм	Размеры, мм
Сверхширокополосный двухкаскадный PIN-диодный ограничитель LW48-700133	0,02-2	18 (входная мощность 40 дБм, частота 100 МГц)	0,6	42	20	11	5×5×1,6
Сверхширокополосный двухкаскадный PIN-диодный ограничитель LW48-700151	0,1-3	18 (входная мощность 40 дБм, частота 100 МГц)	0,8	42	15	11	5×5×1,6
Широкополосный двухкаскадный PIN-диодный ограничитель LW48-700117	2-20	20 (входная мощность 27 дБм, частота 6 и 16 ГГц)	1,4	37	12	_	5×5×1,25
Широкополосный ограничитель и МШУ — LW48-700135	2-18	Коэффициент усиления 16 дБ	-	37	10	-	5×5×1,25

прямое напряжение 720 В. Они выпускаются на основе технологии GaAs.

Также компания разрабатывает и производит детекторы влажности, интегральные системы, объединяющие радиотехнические и волоконно-оптические средства и другую продукцию. Представителем компании Linwave Technology в России является ООО «Радиокомп» [2].

Литература

- 1. www.linwave.co.uk
- 2. www.radiocomp.ru

Таблица 11. Диоды Ганна

Серия, модель	Диапазон рабочих частот, ГГц	Выходная мощность, минимум, мВт	Рабочий ток, максимум, мА	Максимальный ток, мА	Рабочее напряжение, В	Размеры, мм
Диод DC1276G-Т на основе GaAs	26-40	100	650	850	6 (26 ГГц); 4,5 (40 ГГц)	3,7×3
Диод DC1276H-Т на основе GaAs	26-40	200	950	1150	6 (26 ГГц); 4,5 (40 ГГц)	3,7×3
Диод DC1277F-T на основе GaAs	40-60	50	700	1000	5,5 (40 ГГц); 3 (60 ГГц)	3,7×3
Диод DC1278F-Т на основе GaAs	60-75	50	750	1000	5,5	3,7×3
Диод DC1279F-Т на основе GaAs	76-78	50	825	900	Входное напряжение — 5 В	3,72×2,95