Генераторы с применением диэлектрических резонаторов

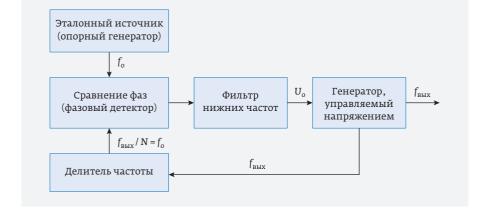
Часть 3 удк 621.389 | ВАК 05.27.01

В. Геворкян, к. т. н. ¹, В. Кочемасов, к. т. н. ², В. Шадский, к. т. н. ³

В первых двух частях статьи, опубликованных во втором и четвертом номерах журнала «ЭЛЕКТРОНИКА: Наука, Технология, Бизнес» за 2020 год, было рассказано об особенностях, основных характеристиках, методах расчета, конструктивном исполнении и производителях генераторов с диэлектрическими резонаторами различных типов. В данном номере рассматриваются основные особенности генераторов с фазовой автоподстройкой частоты, выпускаемых разными производителями.

ГЕНЕРАТОРЫ С ФАЗОВОЙ АВТОПОДСТРОЙКОЙ ЧАСТОТЫ

Фазовые шумы генераторов с ДР могут быть существенно снижены за счет применения системы ФАПЧ (рис. 38). При этом в качестве ГУН выступает АГДР, а опорный сигнал формирует, как правило, кварцевый генератор.


Реализованный по такой схеме генератор фиксированных частот обеспечивает выигрыш в уровне фазовых шумов в полосе пропускания кольца ФАПЧ (серая область на рис. 39) [14], который оказывается тем больше, чем меньше фазовые шумы опорного кварцевого генератора и коэффициент деления N в кольце ФАПЧ. Выигрыш по фазовым шумам зависит также от вида используемой ФАПЧ, достигая максимума при ее аналоговом исполнении, но такие устройства характеризуются узкой полосой захвата.

Опорный кварцевый генератор может быть как внутренним (табл. 13), так и внешним (табл. 14). Достигаемый

эффект определяется только уровнем его фазовых шумов. Внешние опорные источники, как правило, имеют меньший уровень фазовых шумов. В ряде случаев в генераторах с ФАПЧ, содержащих внутренний опорный источник, предусмотрена дополнительная синхронизация по внешнему кварцевому генератору.

Применяемые системы ФАПЧ могут быть образованы как одной, так

Генераторы с ФАПЧ, обладающие меньшими на 20—30 дБн/Гц фазовыми шумами по сравнению с устройствами без ФАПЧ при одинаковых отстройках от центральной частоты генерации, предлагает большое число производителей [17, 21, 29—47]. Рис. 40 [34] и рис. 41 [12] иллюстрируют типичный вид генераторов с ФАПЧ. Видно, что внешний вид и габаритные размеры генераторов с ФАПЧ разных производителей аналогичны. Тем не менее, компании отмечают особенности своих устройств. Например, генератор PS-Al3O-O2 фирмы PureSource рекламируется как высоконадежный, предназначенный для

Рис. 38. Функциональная схема генератора с ФАПЧ с аналоговой системой формирования управляющего напряжения $\mathbf{U}_{_{0}}$ ГУН

и двумя (и более) петлями синхронизации фазы. При создании нескольких петель синхронизации фазы заметного выигрыша в спектральной плотности шума выходного сигнала генератора не наблюдается (см. табл. 14), но при этом упрощаются требования к избирательным свойствам фильтров нижних частот (см. рис. 38) в петле ФАПЧ и этим характеризуются достоинства системы.

¹ НИУ «МЭИ», профессор.

OOO «Радиокомп», генеральный директор.

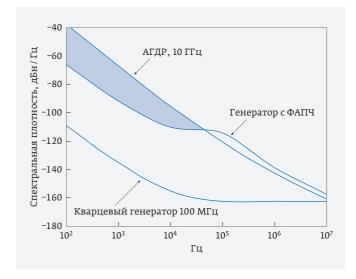
³ AO «Микро-ВИС», заместитель генерального директора.

Таблица 13. Характеристики генераторов с ФАПЧ с синхронизацией от внутреннего эталонного генератора

Компания	Модель, серия	Механи- ческая под- стройка	F ₁ -F ₂ , ГГц	Р _{вых} , дБм	Р _п , дБн	σ _f , дБн/Гц	F _{реф} **, МГц	ТКЧ×10 ⁶ , 1/°С
SAGE Millimeter	SOP-12310113-SF-IC	Н/д	12,0	13	-80	-92	10	Н/д
Pascall Electronics	BP3	Есть	3,5-13,0	13	-80	-112 (8 ГГц)***	Н/д	±2
ВНЕ	BOVI34	Н/д	7,9278	17	-72	-103	Н/д	Н/д
	BOVI44	Н/д	23,7834	17	-65	-94	Н/д	Н/д
PMI	PIA-12D8G-CD-1	Н/д	12,8	>13	-80	-115	100	±3
RADITEK	RPLO (модель 4)	Нет	3,4-8,0	14	-80	-115 (6,6 ГГц)	Н/д	±5
	RPLO (модель 5)	Нет	8,0-10,6	14	-75	Н/д	Н/д	±5
API Technologies****	MDR5100	Н/д	3,0-6,0	13	-80	-118 (3 ГГц) -114 (6 ГГц)	100	±10
	MDR5530	Н/д	8,0-14,0	17	-85	-105	100	<±2
Spectrum Microwave****	MDR5100	Н/д	3,0-21,0	13	-80	-118 (2,5-6 ГГц)	100	±10
	MDR5530	Н/д	9,0-13,0	17	-85	-105	100	<±2
API	Серия MDR5530	Есть	9,0-13,0	17	-85	<-105	100	<±2
Technologies	Серия MDR6100	Нет	3,0-21,0	13	-80	-118 (3 ГГц), -100 (20 ГГц)	100	Н/д
AtlanTecRF	Серия APL-0,6	Есть	0,3-14,0	>13 (опц. 30)	<-70	-125 (0,6 ГГц), -98 (14 ГГц)	50	<±0,5
	Серия АРL-02	Есть	3,4-14,0	13	-80	-115 (3 ГГц), -95 (14 ГГц)	50	Н/д
РμТ	PmT-3220	Нет	0,3-24,0	14	-80	-126 (5 ГГц), -103 (45 ГГц)	Н/д	Н/д
	PmT-3320	Нет	24,0-48,0	14	-80	20log N + 3 или -120 (5 ГГц), -97(45 ГГц)	Н/д	Н/д
Nexyn Corporation	Серия NXPLOS-I	Н/д	3,0-26,0	12-8	-75 - 65	-120 (3-8 ГГц), -107 (26 ГГц)	100	Н/д
MCLI	PLDR	Н/д	10,6-14,00	10-17	-6090	-96	1-1000	Н/д
Kratos	PDRO	Н/д	3,0-15,0	15 (опц. 1 Вт)	~-80	-126 (5 ГГц) -103 (45 ГГц)	100	±2,5 (опц. ±1)
	Серия PDRO	Есть	2,5-19,0	14	-80	-120 (5 ГГц), -102 (18 ГГц)	5, 10	Н/д
	Серия PDRO	Есть	3,0-45,0	15	-80	-126 (5 ГГц), -103 (45 ГГц)	<100	Н/д
Luff Research	PLDRO-10000-INT	Есть	10,0	13	-70	-110	100	Н/д

СВЧ-ЭЛЕКТРОНИКА www.electronics.ru

Таблица 13. Продолжение


Компания	Модель, серия	Механи- ческая под- стройка	F ₁ -F ₂ , ГГц	Р _{вых} , дБм	Р _п , дБн	σ _f *, дБн/Гц	F _{реф} **, МГц	ТКЧ×10 ⁶ , 1/°С
Exodus Dynamics	Серия EDPLO-3000	Н/д	1,0-40,0	13	-80	-112 (12 ГГц)	50-150	±5
Microwave Dynamics	Серия PLO-300	Н/д	3,0-50,0	13	-80	-116 (3 ГГц), -108 (22 ГГц)	50-150	±5
Lucix	LO-021-X4B	Нет	2,098-2,205	12-15	-70	-122	Н/д	Н/д
	LO-099-XB	Нет	9,746-10,250	13-16	-80	-109	Н/д	Н/д
	LO-423-XB	Нет	41,331-43,420	6-9	-80	-96	Н/д	Н/д

^{*} При отстройке от несущей на 10 кГц.

систем с большими потоками передачи данных и с возможностью стабилизации частоты внешним эталонным генератором. На рис. 41 приведен генератор фирмы Exodus Dynamics серии EDPLO-4000 с внешним опорным (эталонным) генератором, работающим на частоте 10 МГц, который обеспечивает кварцевую стабильность частоты ГУН. Отдельно указывается, что характеристики такого генератора сохраняются при высокой влажности окружающей среды, что может характеризовать его как герметичный. Сверхмалошумящий генератор миллиметрового диапазона с ФАПЧ серии EDRO-2200 [12]

Рис. 40. Генератор с ФАПЧ PLO-3000-20.00 фирмы Microwave Dynamics

Рис. 39. Пример спектральной плотности фазовых шумов АГДР, генератора с ФАПЧ и кварцевого генератора

Рис. 41. Высокостабильный генератор с ФАПЧ серии EDPLO-4000 с внешним опорным генератором компании Exodus Dynamics

^{**} Частота опорного генератора.

^{***} Здесь и в аналогичном столбце в табл. 14 в скобках указана частота, которой соответствует данное значение.

^{****} Ранее эти модели поставлялись фирмой Remec.

Таблица 14. Характеристики генераторов с ФАПЧ с внешним эталонным генератором

Компания	Модель, серия	F ₁ -F ₂ , ГГц	Р _{вых} , дБм	Р _п , дБн	F _{реф} *, МГц	σ _f ", дБн/Гц	Механи- ческая под- стройка, МГц	Специ- фиче- ские особен- ности
Farran Technology	Low noise PLO	220	0	Н/д	10	-80	Нет	Нет
Spectrum	624107	7,0	13	-70	100	-123	Н/д	1 петля
Microwave	627122	7,0	13	-70	100	-118	Н/д	1 петля
Microwave Dynamics	Серия PLO-2000	3,0-50,0	13	-80	50-200	-117 (4 ГГц), -105 (22 ГГц)	100 ****	Нет
	Серия PLO-4000	3,0-50,0	13-25	-80	10 (опц. 5)	-96 (4 ГГц), -80 (22 ГГц)	Н/д	Нет
Kratos	PDRO	3,0-18,0	15	~-80	50-300	-120 (5 ГГц), -105 (18 ГГц)	Н/д	1 петля
		3,0-18,0	15	~-80	5-15	-120 (5 ГГц), -105 (18 ГГц)	Н/д	2 петли
		3,0-45,0	15	-80	1-1000	-126 (5 ГГц), -103 (45 ГГц)	Есть	Нет
		2,5-19,0	14	-80	50-200	-120 (5 ГГц), -105 (18 ГГц)	Есть	Нет
MITEQ	PLDRO	6,7-13,4	13	-75	5-100	-117106	Есть	1 петля
		13,4-26,8 (×2)	Н/д	-70	Н/д	-111100	Есть	_
		26,8-40,0 (×4)	10	-65	Н/д	-105100	Есть	_
	DLCRO	0,6-4,0	>13	<-70	1-200	-120 (5 ГГц)	Н/д	2 петли
		4,0-15,0	Н/д	Н/д	Н/д	-118 (13 ГГц)	Н/д	
	Серия PLO-3000	8,4-30,0	13-7	-90	100-500	-115***	Нет	Нет
FEI-Elcom	SPDRO-1006A	3,6	13,5-16,5	<-80	600	-128	Н/д	1 петля
Tech	SPDRO-10300	10,3	1-3	<-70	10	-103	Н/д	1 петля
PMI	PIA-6D6G-SFF-EXREF	6,6	>13	-80	10	-120	Н/д	1 петля
	PIO-6D8G-15DBM-SF	6,83469	14	-80	13,4013439	20logN+3	Н/д	1 петля
	PLO-6D8G-CD-1	6,83469	14	-80	13,4013439	-120***	Нет	Нет
	DRO-22G-15DBM-SF	22.0	19	-60	100	-107***	Нет	Нет
	DRO-22G-CD-1	22,0	19	<- 60	100	20logN+8	Н/д	1 петля
Pascall	BP1	3,5-13,0	13	-80	50-200	-115 (8 ГГц)	±25	1 петля
Electronics	BP2	3,5-13,0	13	-80	5-10	-112	Н/д	2 петли

Таблица 14. Продолжение

Компания	Модель, серия	F ₁ -F ₂ , ГГц	Р _{вых} , дБм	Р _п , дБн	F _{реф} *, МГц	σ _f ∵, дБн/Гц	Механи- ческая под- стройка, МГц	Специ- фиче- ские особен- ности
Nexyn Corporation	NXPLOS	3,0-16,5	15-20	<-80 (опц. -100)	50, 100	-128113	Н/д	1 петля
	Серия NXPLOS-IX	3,0-18,0	12-8	-7570	5, 10	-117104, -112 (9-14 ГГц)	±20	Нет
	NXPLOS-DL	3,5-13,0	15-20	<-80 (опц. -100)	5, 10	-128112	Н/д	2 петли
РμТ	PmT-3210/3310	0,3-24,0	14	-80	100	20logN+3 или -120 (5 ГГц), -107 (26 ГГц)	Нет	1 петля
TRAK Microwave	OSC10-750	3,0-12,0	10	-70	5-150	-110 (3 ГГц), -97 (10 ГГц)	Нет	Нет
	OSC037	6,6	10	<-75	5	-114	Нет	1 петля
Chengdu Simon Elektronika Teknologio	PDRO57V	1,0-16,0	7	-70	100	-135 (1 ГГц), -105 (16 ГГц)	Н/д	Нет
SAGE Millimeter	Серия SOP	2,0-110,0	27-10	-8065	100-500	-11085	Есть	Нет
AtlanTecRF	Серия APL-03	3,4-14,0	13	-70	25-200	-105 (14 ГГц)***	Есть****	Нет
MCLI	Серия PLDR	3,0-22,00	15-13	-8085	50-150	Н/д	Н/д	1 петля
		4,0-14,0	17-10	-6090	50-150 (<10,5 ГГц), 1-1000 (>10,6 ГГц)	-117 (4 ГГц), -96 (14 ГГц)	3% (<10,5 ГГц), 100 (>10,6 ГГц)	Нет
Lucix	LO-0113-E8B	1,103-1,159	12-15	-70	50-500	-136***	±0,905	Нет
	LO-403-ED	39,341-41,330	6-9	-80	50-500	-105***	±32,2	Нет
API Technologies	Серия MDR6100	3,0-21,0	13	-80	100	-118 (3 ГГц), -100 (20 ГГц)	±10±20	Нет
	Модель 627122	13,0	13	-70	100	-118	Нет	Нет
FEI-Elcom	S-1006A	3,6	1-3	-80	600	-128	Нет	Нет
Tech	SPDRO-10300	10,3	13,5-16,5	-70	10	-103	Нет	Нет
Luff Research	PLDRO-10000-100	10,0	15-13	-60	100	-110	Есть****	*****
	PLDRO-25000-10	25,0	15-13	-70	10	-105	Есть****	****

Таблица 14. Продолжение

Компания	Модель, серия	F ₁ -F ₂ , ГГЦ	Р _{вых} , дБм	Р _п , дБн	F _{реф} *, МГц	σ _f ", дБн/Гц	Механи- ческая под- стройка, МГц	Специ- фиче- ские особен- ности
Exodus Dynamics	Серия EDPLO-2000	1,0-40,0	13	-80	30-200	-113 (12 ГГц)	-100****	Нет
Resotech	Серия PLDRO	4,0-14,0	14	-80	10,40-130	-109 (5,6 ГГц), -103 (10 ГГц)	2-3%****	Нет
ВНЕ	BOVX 21	3,0	10	-80	120	-106	Нет	Нет
Crane Aerospace & Electronics	Серия 8510	6,0-18,0	10	-70	100	-105 (12 ГГц)	Нет	Нет
CETC International	PLDROxxx	4,0-18,0	13	-70	50-200	-114 (4 ГГц), -100 (18 ГГц)	Есть	Нет
Synergy Microwave Corporation	KSFLOD1280-12-1280	12,8	10	-75	1280	-122	Есть	Нет
Genmix Technology	Серия PLDRO	6,5-26,0	12	-80	10	-100	Есть	Нет
Jersey Microwave	Серия PLDRO	1,0-32,0	14-10	-80	5, 10, 50, 100	Н/д	Нет	****
RADITEK	Серия RPLO-A-M4	4,4-7,9	15	-80	100	Н/д	Нет	Нет

Частота опорного генератора.

фирмы Exodus Dynamics при использовании опорного генератора с частотой от 30 до 200 МГц обеспечивает формирование двух выходных сигналов с частотами в диапазоне от 100 МГц до 45 ГГц с выходной мощностью не менее 25 дБм при питании 12 или 15 В в диапазоне температур от -40 до 85 °C. Заметим, что формирование нескольких выходных частот обеспечено в моделях и ряда других производителей. Так, например, ГНПП «Исток» им. А.И. Шокина (г. Фрязино МО) выпустило генераторные устройства с коммутацией источников СВЧ-сигналов на одну нагрузку [51]. Разработанные генераторные модули представляют собой комбинации из нескольких, от четырех до восьми, высокостабильных автогенераторов, каждый из которых настроен на заданную частоту

и обладает возможностью быстрого возбуждения и срыва колебаний без изменения электрического и теплового режимов транзистора. В этом случае время установления частоты колебаний в автогенераторах не превышает нескольких микросекунд. Срыв колебаний у неподключенных к нагрузке автогенераторов гарантирует полное отсутствие паразитных составляющих в рабочем диапазоне частот. Переключение генераторов осуществляется с помощью коммутатора, управляемого сигналами ТТЛ-уровня. Созданные генераторные устройства имеют выходную мощность 10-20 мВт. Количество фиксированных частот – от четырех до восьми. Также возможны устройства с применением АГ, работающего на частотах выше 9 ГГц, и блока удвоения частоты.

^{∗∗} При отстройке от несущей на 10 кГц.

^{***} При отстройке от несущей на 100 кГц.

Вероятно, опция для компенсации технологических и температурных сдвигов.

в конструкции предусмотрена возможность организации дополнительной пели ФАПЧ.

Интересно предложение фирмы Exodus Dynamics — серия EDPLO-3030 высокостабильных генераторов с ФАПЧ для частот от 30 МГц до 50 ГГц с выходной мощностью до 25 дБм, температурной стабильностью $\pm 0.2 \cdot 10^{-6}$ 1/°C при размерах $2.25 \times 2.25 \times 0.65$ дюйма [12].

Параметры генераторов с ФАПЧ разных производителей (см. табл. 13 и 14) позволяют заключить, что спектральный уровень фазовых шумов в основном зависит от частотного диапазона АГ и в меньшей степени от типа опорного генератора.

100 100 100

Приведенные характеристики АГДР практически соответствуют уровню техники конца прошлого века. Это объясняется небольшим прогрессом в улучшении параметров комплектующих АГДР. Возможности современных цифровых технологий позволяют с применением принципов построения синтезаторов частот создавать компактные СВЧ-генераторы с характеристиками, не уступающими АГДР, в сочетании с чрезвычайно широким диапазоном перестройки частоты [52]. Синтезаторы частот ведущих производителей: Analog Devices, Hittite, National Semiconductor, построенные на базе широкополосных ГУН, имеющих относительно АГДР высокие спектральные плотности фазовых шумов (примерно -70...-80 дБн/Гц при отстройке на 10 кГц от несущей), не уступают по кратковременной стабильности генераторам с ФАПЧ, в которых используются АГДР. При этом необходимо отметить более высокую стоимость таких устройств.

С точки зрения оценки уровня отечественного производителя синтезаторов частоты и решения задачи импортозамещения важно отметить синтезатор частот от 100 МГц до 20 ГГц фирмы ООО «Радиокомп», который на частоте 10 ГГц обладает фазовыми шумами -120 дБн/Гц при отстройке от частоты генерации на 10 кГц.

Исходя из проведенного анализа можно сделать вывод, что в настоящее время область применения АГДР ограничена генераторами фиксированных частот с малой электрической перестройкой или генераторами с ФАПЧ с ГУН в виде АГДР, предназначенных для работы практически на фиксированной частоте. Последние изделия технически более сложные, но и обладают более низким уровнем фазовых шумов.

ЛИТЕРАТУРА

1. Алексейчик Л.В., Бродуленко И.И., Геворкян В.М., Казанцев Ю.А., Парышкуро Л.А. Состояние и перспективы применения миниатюрных диэлектрических резонаторов в радиоэлектронике. Часть ІІ. Пассивные и активные СВЧ-устройства с миниатюрными диэлектрическими резонаторами // Обзоры по электронной технике. Серия 1. Электроника СВЧ. Вып. 2 (865). 1982. 66 с.

- 2. **Геворкян В., Кочемасов В.** Объемные диэлектрические резонаторы основные типы, характеристики, производители. Часть 1 // ЭЛЕКТРОНИКА: Наука, Технология, Бизнес. 2016. № 4. С. 62–76.
- Liang E. C. Characterization and modeling of high Q dielectric resonators // Microwave Journal. Nov. 2016.
 P. 68–86
- 4. Диэлектрические резонаторы / Под ред. проф. М. Е. Ильченко. М.: Радио и связь, 1989. 328 с.
- 5. **Белов Л., Хилькевич В.** Генераторы с диэлектрическими резонаторами для стабилизации частоты // ЭЛЕКТРОНИКА: Наука, Технология, Бизнес. 2006. № 7. С. 54–59.
- 6. Абраменков А.И., Бродуленко И.И., Геворкян В.М., Ковтунов Д.А. Состояние и перспективы применения миниатюрных диэлектрических резонаторов в перестраиваемых полупроводниковых генераторах / Под ред. Геворкяна В.М. Обзоры по электронной технике. Серия 1. Электроника СВЧ. Вып. 5 (1359). 1988. 70 с.
- 7. **Amir Effendy Muhammad-Afifi, Widad Ismail.** High Tuning Sensitivity Dielectric Resonator Oscillator From Optimization of Dielectric Resonator TE₀₁₆ Mode. Technical Feature // Microwave Journal. October 2011. P. 128–142.
- 8. **Бунин А. В., Вишняков С. В., Геворкян В. М., Казанцев Ю. А.** Проектирование колебательной системы генератора миллиметрового диапазона длин волн // 15-я Международная Крымская конференция «СВЧ-техника и телекоммуникационные технологии» (КрыМиКо 2005), г. Севастополь, 12–17 сентября 2005 г. Том 2. Доклад № 106. С. 465–467.
- 2. Алексейчик Л.В., Бродуленко И.И., Геворкян В.М., Казанцев Ю.А., Парышкуро Л.А. Состояние и перспективы применения миниатюрных диэлектрических резонаторов в радиоэлектронике. Часть І. Параметры миниатюрных диэлектрических резонаторов на СВЧ и методы их расчета // Обзоры по электронной технике. Серия 1. Электроника СВЧ. Вып. 13 (832). 1981. 97 с.
- 10. **Геворкян В. М., Казанцев Ю. А., Михалин С. Н.** Анализ СВЧ резонансной цепи с электрической перестройкой частоты с применением программы DesignLab 8.0 // Труды МКЭЭЭ-2018. Сент. 24–28, 2018. Крым, Алушта. М.: 3HAK, 2018. С. 381–386.
- 11. **Бунин А., Вишняков С., Геворкян В.** Проектирование генератора миллиметрового диапазона длин волн // ЭЛЕКТРОНИКА: Наука, Технология, Бизнес. 2008. № 6. С. 106—110.
- 12. Free Running Dielectric Resonator Oscillator. Ultra Low Noise Microwave Signal Source Интернет-ресурс http:// exodusdynamics.com/wp/wp-content/uploads/2014/10/EDRO-1000.pdf
- 13. DRO Introduction REMEC. Интернет-ресурс http://micro.apitech.com/
- 14. **Güttich U.** Active Elements Used in Microstrip Dielectric Resonator Oscillators // Microwave Journal. April 1996. P. 92–96.

- 15. Phase-Locked Oscillator Products (Basic product description). Интернет-ресурс http://www.luffresearch. com/Phase-Locked Oscillators.html
- 16. DRO Application Note D-104: Phase-Locked DRO Characteristics. – Интернет-ресурс http://micro.apitech.com/
- 17. Hittite Microwave Corporation. Интернет-ресурс www.hittite.com
- 18. Synergy Microwave Corporation. Интернет-ресурс www.synergymwave.com
- 19. SOD-37301213-22-S1 Dielectric Resonator Oscillator, 37 GGz; ±13 dBm. SAGE Millimeter, Inc. – Microwave Journal. February 13, 2014.
- 20. MITEQ. Интернет-ресурс www.miteq.com
- 21. Atlantic Microwave Ltd. (бренд AmRF). Интернет-ресурс www.amrf.co.uk
- 22. Linear Technology. Интернет-ресурс www.linear.com
- 23. STC Microwave Systems-Olektron (Crane Aerospace & Electronics). Интернет-ресурс www.craneae.com
- 24. General Microwave Corp (Herley Industries Incorporated). Интернет-ресурс http://www.kratosmed.com/gmcatalog
- 25. JSB Service Company. Интернет-ресурс www.jsbservice.com
- 26. Pascall Electronics Ltd. Интернет-ресурс www.pascall.co.uk
- 27. TRAK Microwave. Интернет-ресурс www.trak.com
- 28. Rodelco Electronics Corp. Интернет-ресурс www.rodelco-usa.com
- 29. Magnum Microwave Corp. Интернет-ресурс http://micro.apitech.com/
- 30. Delphi Components, Inc. (Aura Systems Inc.). Интернет-ресурс www.aurasystems.com
- 31. Microwave Dynamics. Интернет-ресурс www.microwave-dynamics.com
- 32. Communication Techniques, Inc. (Herley Industries Incorporated). Интернет-ресурс http://www.kratosmed.com/
- 33. Amplus Communication Pte Ltd. Интернет-ресурс www.amplus.com.sq
- 34. Nexyn Corporation. Интернет-ресурс www.nexyn.com

- 35. Jersey Microwave Limited. Интернет-ресурс www.jerseymicrowave.com
- 36. Spectrum FSY Microwave. Интернет-ресурс www.specwave.com
- 37. Lucix Corporation. Интернет-ресурс www.lucix.com
- 38. RADITEK. Интернет-ресурс www.raditek.com
- 39. KoSpace Co. Ltd. Интернет-ресурс www.kospace.com
- 40. Elcom Technologies Inc. Интернет-ресурс https://fei-elcomtech.com/
- 41. Luff Research, Inc. Интернет-ресурс www.luffresearch.com
- 42. Princeton Microwave Technology, Inc. Интернет-ресурс www.princetonmicrowave.com
- 43. Narda Microwave. Интернет-ресурс www.nardamicrowave.com
- 44. Remec Magnum. Интернет-ресурс http://micro.apitech.com
- 45. Herley Industries Inc. Интернет-ресурс http://www.kratosmed.com/
- 46. Milli Optics Inc. Интернет-ресурс https://www. microwavejournal.com/articles/print/814-new-products
- 47. Herley-CTI. Интернет-ресурс http://www.kratosmed.com/
- 48. CTI Industries. Интернет-ресурс www.ctiind.com
- 49. Microwave Communications Laboratories, Inc. (MCLI). Интернет-ресурс www.mcli.com
- 50. Абраменков А.И., Геворкян В.М. Перестраиваемый фильтр на диэлектрическом резонаторе. Авт. свид. № 1185439 (СССР) от 2.11.79. МКИ НО1Р 1/20. БИ № 38, 15.10.85.
- 51. Мальцев В. А., Мякиньков В. Ю., Рудый Ю. Б., Горюнов И.В., Гусев А.П., Лебедев В.Н., Тыртышников А.В., Чугуй А.П. Твердотельные СВЧ генераторы малой мощности (к 60-летию ФГУП «НПП «ИСТОК»). – Интернетpecypc http://nauchebe.net/2012/04/tverdotelnye-svchgeneratory-maloj-moshhnosti-k-60-letiyu-fqup-npp-istok
- 52. Кузменков А.С., Поляков А.Е., Стрыгин Л.В. Обзорный анализ современных архитектур синтезаторов частот с ФАПЧ // Радиотехника и телекоммуникации. Труды МФТИ. 2013. Т. 5, № 3. С. 121–133. – Интернет ресурс https://mipt.ru/upload/374/121-133-arphj8q0q1k.pdf/

