ТВЕРДОТЕЛЬНЫЕ СВЧ-ФАЗОВРАЩАТЕЛИ

ЧАСТЬ 2

В.Кочемасов, к.т.н.¹, В.Шадский, к.т.н.²

УДК 621.389 ВАК 05.27.00

> В первой части статьи, опубликованной в предыдущем номере журнала, рассматривались конструкции и характеристики различных твердотельных фазовращателей, работающих в СВЧдиапазоне. Сегодня речь пойдет о других типах таких устройств.

ВЕКТОРНЫЕ ФАЗОВРАЩАТЕЛИ

Фазовращатели этого типа реализуются на векторных модуляторах (рис.23), обеспечивающих в общем случае изменение амплитуды и фазы подаваемого на них сигнала. В состав векторного модулятора входят квадратурный гибридный мост (КГМ), два бифазных модулятора (БМ), столько же управляемых аттенюаторов – Атт 1

и Атт 2 и синфазный сумматор мощности (ССМ).

В такой структуре входной сигнал делится в квадратурном гибридном мосте на два равных по мощности сигнала, сдвинутых на 90°. Эти сигналы подаются на бифазные модуляторы, на выходе которых обеспечивается требуемый фазовый сдвиг с точностью до квадранта.

Фазоинвариантные управляемые аттенюаторы формируют амплитуды синфазной $U_1 = U \sin \Phi$ и квадратурной $U_Q = U \cos \Phi$ составляющих входного сигнала $u_{sx}(t) = 2 U \sin \omega t$, обеспечивая тем самым фазовый сдвиг Ф на выходе ССМ в пределах первого квадранта. Управление фазами Φ_1 и Φ_Q бифазных модуляторов позволяет расширить пределы возможного изменения фазы Ф до значений 0–360° (табл.6).

Диаграмма в полярных координатах (рис.24) поясняет процесс сдвига фаз входного сигнала на Ф₁ и Ф₂ градусов при использовании векторного модулятора в режиме фазовращателя. Уровень сигнала на выходе векторного модулятора в таком режиме поддержива-

¹ ООО "Радиокомп", генеральный директор, vkochemasov@radiocomp.ru.

² ЗАО "МИКРО-ВИС", руководитель проектов, shadskij@mail.ru.

Рис.23. Структурная схема векторного модулятора

ется постоянным. В качестве управляющих элементов в векторном модуляторе могут использоваться, например, pin-диоды или полевые транзисторы. Векторные фазовращатели могут быть как аналоговыми, так и цифровыми (табл.7).

Рассмотрим пример аналогового отражательного векторного фазовращателя на трех ответвителях Ланге и сумматоре Вилкинсона (рис.25) [14]. Устройство управляется GaAs HEMT-транзисторами, обеспечивающими изменение характеристик отражающих нагру-

Таблица 6. Значения фазовых сдвигов Ф₁ и Ф_Q, устанавливаемых на выходе бифазных модуляторов в зависимости от требуемого сдвига фаз Ф на выходе векторного модулятора

Φ	$\Phi_{_{\rm I}}$	$\Phi_{ m Q}$
0-90°	0°	90°
90-180°	180°	90°
180-270°	180°	270°
270-360°	0°	270°

СВЧ-ЭЛЕКТРОНИКА

Выход

Рис.24. Диаграмма в полярных координатах, показывающая принцип работы векторного модулятора в режиме фазовращателя (фазовые сдвиги Φ_1 и Φ_2) и в режиме аттенюатора/фазовращателя (фазовые сдвиги Φ_3 и Φ_4).

зок. Чип фазовращателя размером 2,0×1,2 мм² обеспечивает в диапазоне частот 27–32 ГГц 360°-ный фазовый сдвиг при малом вносимом ослаблении IL = 5,0±0,8 дБ и очень низком уровне потребляемой мощности.

Фазовращатели векторного типа в интегральном исполнении реализуются и на более высоких частотах. Так, 5-разрядный фазовращатель этого типа вхо-

Ответвитель Ланге

0° или 180°

Вход

Ответвитель

-90°

Рис.25. Векторный фазовращатель с использованием направленных ответвителей Ланге и сумматора Вилкинсона

дит в каждый из восьми передающих и восьми приемных каналов 16-элементной фазированной антенной решетки в чип-исполнении по технологии SiGe [15]. В диапазоне частот 85–90 ГГц эти фазовращатели обеспечивают 5°-ную среднеквадратичную ошибку. Характер изменения фазового сдвига для каждого из возможных значений кода управления в расширенном диапазоне частот 70–95 ГГц представлен на рис.26а [15].

Таблица 7. Характеристики векторных фазовращателей с 360°-ным фазовым сдвигом

Фирма	Модель	Диапазон частот, ГГц	Вносимые потери, дБ	Допустимая входная мощность, дБм	Управление	Конструктивное исполнение
PMI	PS-400M2000M-360-8D	0,4-2,0	13	10	8 бит	Модуль
PMI	PS-360-AC	3,5-6,5	12	20	0-10 B	Модуль
Kratos	7828	6,0-18,0	12	20	0-6 B	Модуль
Kratos	7728A	6,0-18,0	12	20	10 бит	Модуль
PMI	PS-2G18G-370-8D	2,0-18,0	18	20	8 бит	Модуль
Kratos	7929	18,0-40,0	15	20	10 бит	Модуль
НИИМА "Прогресс"	1338XK6Y	0,10-1,55	-	-17	6 бит	ИС
Hittite	HMC631LP3	1,8-2,7	-	18-21	0,5-2,5 B	ИС

Рис.26. Зависимости фазовых сдвигов Ф от частоты f: а – 5-разрядный фазовращатель, 31 состояние, диапазон частот 70–95 ГГц; б – 4-разрядный фазовращатель, 15 состояний, диапазон частот 220–320 ГГц (сплошные линии – измерения, пунктирные – расчет)

Фирма	Модель, серия	Диапазон частот, ГГц	Ампли- тудный диапа- зон, дБ	Ампли- тудная ошибка, дБ	Фазовая ошибка, град	Допустимая входная мощность, дБм	Управление
PMI	PSAT-2500-11B-CD-1	2,5	60	±1	_	-1000	-315 В (фаза), 11 бит (ампли- туда)
G.T. Microwave	M2L-48A-1HF	1,75-4,75	60	±2	±15	15	2×12 бит
Kratos	Серия 7322/7422	2,0-6,0	60	_	±15	20	12 бит/ 0–10 В
PMI	Серия PS-360-АС (опция 37)	3,5-6,5	20	_	±15	20	0-10 B
PMI	Серия PS-360-АС (опция 810)	8,5-10,0	20	_	±15	20	0-10 B
PMI	PSAT-9G11G-360D-60DB-10D	9,0-11,0	63, 94	±1	±1	10	2×10 бит
Kratos	Серия 7124/7224	4,0-12,0	20	-	±15	20	12 бит/0-10 В
G.T. Microwave	M2L-69A-5	2,0-18,0	16	±3,5	±20	10	Цифровое или аналоговое
G.T. Microwave	M2L-84N-5HD	16,0-24,0	40	±2,5	±22	15	Цифровое
Kratos	Серия 7329/7429	16,0-24,0	60	_	±20	20	12 бит/0-10 В

Таблица 8. Характеристики векторных модуляторов в модульном исполнении

Рис.27. Структурная схема векторного модулятора в модульном исполнении. ПН – преобразователь напряжения в код

На еще больших частотах (220–320 ГГц) реализован активный векторный фазовращатель, в котором аттенюаторы заменены усилителями с регулируемым коэффициентом усиления, выполненными по технологии 250 нм InP DHBT [16]. Среднеквадратичные амплитудные и фазовые ошибки при всех кодах управления не превышают 1,2 дБ и 10,2° соответственно. Результаты измеренных и расчетных зависимостей вносимого фазового сдвига во всем частотном диапазоне для каждого из 15 кодов управления представлены на рис.266 [16].

Использование 130 нм КМОП-технологий и оригинальных схемотехнических решений, базирующихся на применении специальных операционных усилителей, позволило реализовать в кристалле площадью 0,3 мм² 6-разрядный векторный фазовращатель, предназначенный для работы в диапазоне частот 4,95,9 ГГц. При этом среднеквадратичные значения фазовой и амплитудной ошибки, рассчитанные по результатам измерений, составили на центральной частоте 5,4 ГГц соответственно 1,25° и 0,5 дБ [17].

АТТЕНЮАТОРЫ / ФАЗОВРАЩАТЕЛИ

Во многих существующих и перспективных изделиях требуется одновременно изменять амплитуды и фазы поступающих на них сигналов. Подобные устройства используются для формирования радиолучей, линеаризации мощных усилителей и в других схемах, где требуется амплитудно-фазовая коррекция. Для решения этой задачи могут быть использованы векторные модуляторы и последовательно включенные цифровые аттенюаторы и фазовращатели.

Структура векторных модуляторов позволяет использовать устройства не только в режиме фазовращателей, но и обеспечивать с их помощью дополнительно к изменению фазы регулировку амплитуды выходного сигнала, что иллюстрируется на рис.24 для сдвигов фазы Ф₃ и Ф₄. Основные производители векторных модуляторов – компании G.T. Microwave, Kratos и PMI (табл.8).

Управление в векторных модуляторах может быть как аналоговым, так и цифро-аналоговым, что иллюстрируется упрощенной структурной схемой на рис.27. Монотонный характер зависимости фазы и амплитуды выходного сигнала от управляющего напряжения позволяет обеспечивать цифровое управление посредством использования цифро-аналоговых преобразователей и линеаризирующих цепей. Ряд моделей (см. табл.8), производимых компаниями G.T. Microwave и Kratos, выпускаются в двух вариантах управления (аналоговое или цифровое).

В последние годы компания Analog Devices активно продвигает на рынок интегральные векторные модуляторы, в которых вместо пассивных управляемых аттенюаторов используются усилители с регулируе-

> мым усилением (табл.9). Активные векторные модуляторы чаще всего выполняются по КМОПтехнологии, что обеспечивает их малые габариты и потенциально низкую стоимость.

> Судя по научным публикациям, рабочий диапазон частот подобных устройств в ближайшие годы существенно расширится. Так, в одном из разработанных 360°-ных векторных модуляторов по 0,18 мкм КМОП-технологии [18] в диапазоне 15–20 ГГц удалось получить вносимое затухание 8 дБ, динамический

Таблица 9. Характеристики активных векторных модуляторов в интегральном исполнении от компании Analog Devices

Модель	Диапазон частот, ГГц	Амплитудный динами- ческий диапазон, дБ	Максимальная вход- ная мощность, дБм
HMC500	1,8-2,2	40	16
HMC630	0,7-1,0	40	17
HMC631	1,8-2,7	40	21
AD8340	0,7-1,0	30	11
AD8341	1,5-2,4	30	8,5
AD5390	0,02-2,40	35	11

Рис.28. Блок-схема приемо-передающего модуля. Голубым фоном выделена структура управляющего кристалла

диапазон 37 дБ и размеры чипа 0,95×0,76 мм. Напомним, что рабочий диапазон векторных фазовращателей уже достиг значений 220–320 ГГц [16].

Наряду с векторными модуляторами широко используются последовательно включенные управляемые цифровым кодом фазовращатели и аттенюаторы, входящие в состав приемо-передающих модулей АФАР (рис.28). Устройства обеспечивают требуемое фазовое и амплитудное распределения по всему раскрыву решетки. Мировые производители интегральных СВЧ-изделий для каждого диапазона частот выпускают широкую номенклатуру СВЧкомпонентов (цифровые аттенюаторы и фазовращатели, переключатели, малошумящие и мощные усилители). Только одна компания UMS предлагает потребителям семь чип-наборов (chipset) для L-, S-, C-, X-, Ku-, Ka- и 6–18 ГГц диапазонов частот.

В зависимости от задач, решаемых АФАР, количество приемо-передающих модулей в ней может меняться от единиц до сотен тысяч и миллионов. При большом количестве приемо-передающих модулей в АФАР первоочередное значение приобретают технологичность их изготовления, размеры,

потребляемая мощность и стоимость. Это обстоятельство требует большей степени интеграции входящих в приемо-передающие модули компонентов. В примере на рис.28 часть приемо-передающего модуля реализована в интегральном исполнении в виде управляющего кристалла (core-chip). Поскольку процессы передачи и приема сигналов разнесены во времени, амплитудное и фазовое распределения по всему раскрыву решетки при передаче и приеме сигналов удается обеспечить с помощью одного цифрового фазовращателя и одного цифрового аттенюатора, а также нескольких

Рис.29. Зависимости фазовой (а) и амплитудной (б) ошибок от частоты при 64 значениях кода управления (модель CHC3014-99F, компания UMS)

Рис.30. Зависимость коэффициентов усиления приемника G_{Rx} (а) и передатчика G_{Tx} (б) от частоты для различных значений температуры окружающей среды (микросхема AMT2941031, компания Astra Microwave Products)

усилителей и переключателей, входящих в управляющий кристалл. Прохождение сигнала от входа передатчика до его выхода и от входа приемника до его выхода на рис.28 показано красной и зеленой линиями соответственно. Характеристики некоторых управляющих кристаллов сведены в табл.10.

Характер изменения фазовых и амплитудных ошибок в зависимости от частоты для всех возможных значений кода управления по фазе (рис.29) в микросхеме СНС3014-99F позволяет оценить достигнутый на сегодняшний день научно-технический уровень. Зависимости усиления в приемном и передающем каналах микросхемы AMT2941031 от частоты (рис.30а, б) для трех значений температуры (–40, 25 и 85 °C) дают возможность сделать выводы о приемлемости их использования в практических приложениях.

ф	Manan	Диапазон	Максимальный сдвиг	Число разрядов		
Фирма	модель	частот, ГГц	по фазе (град) / амплитуде (дБ)	фазовращатель	аттенюатор	
МАСОМ	XZ1001-BD	2,5-4,0	354,4/28,4	6	6	
АМР	AMT2941031	9,0-10,0	354,4/31	6	6	
RFCore	RFM080105DA	8,0-10,5	354,4/31	6	5	
МАСОМ	XZ1002-BD	8,5-11,0	354,4/28,5	6	5	
"Ленинградские микроволны"	ФРЦБ.434857.001	8,5-11,0	354,4/27,9	6	5	
OMMIC	CGY2170XHV	8,0-12,0	354,4/32	6	6	
ОАО "НИИПП"	MSM205	8,0-12,0	354,4/23,25	6	5	
UMS	CHC3014-99F	8,0-12,0	354,4/34,65	6	6	
Anokiwave	AWS-0101	8,0-12,0	354,4/31,5	6	6	
RFCore	RFM130150DA	13,0-15,0	354,4/31	6	5	
Anokiwave	AWS-0102	17,7-20,2	348,7/15,5	5	5	

Таблица 10. Характеристики управляющих кристаллов

СВЧ-ЭЛЕКТРОНИКА

Рис.31. Надежность микросхемы XZ1002-BD (компания MACOM) в зависимости от температуры окружающей среды

Представляет также интерес зависимость среднего времени наработки до отказа (Mean time to failure, MTTF) от температуры окружающей среды для микросхемы XZ1002-BD (рис.31), полученная расчетным путем (эта зависимость практически одинакова при использовании устройства в передающем и приемном режимах). Из графика видно, что надежность при температурах 10 и 60 °C отличается на три порядка. Важная характеристика управляющих кристаллов – время их реагирования на поступающие команды. Входящие в управляющий кристалл фазовращатели и аттенюаторы переключаются за несколько наносекунд. Однако введение управляющих цифровых интерфейсов, как было установлено специалистами компании "Ленинградские микроволны", увеличивает время переключения до нескольких десятков наносекунд.

Отметим, что во многих управляющих кристаллах вместо перестраиваемых аттенюаторов используются усилители с регулируемым усилением.

Одна из наиболее известных компаний, специализирующихся в области core-chip кристаллов, – Anokiwave. Ей удалось создать линейку таких устройств, функционирующих в диапазоне частот от 8,0–11,0 до 27,5– 30,0 ГГц.

Особенность этих изделий в том, что в рамках одной микросхемы в корпусе PQFN размером 6×6 мм или 7×7 мм размещены от четырех до восьми управляющих кристаллов, работающих на четыре или восемь антенных элементов (АЭ) (табл.11). Две из этих микросхем (AWS-0101, AWS-0103) обеспечивают формирование одного луча в передающем и двух лучей в приемном режиме. Три микросхемы (AWS-0104, AWS-0105, AWS-0108) формируют один луч в режимах приемо-передачи. Еще две – обеспечивают формирование одного луча в приемном (AWS-0112) и передаю-

Модель	Диа- пазон частот, ГГц	Выходная мощность передат- чиков, дБм	Коэффи- циент шума прием- ников, дБ	Число разря- дов управ- ления фазой и амплиту- дой	Коэффици- енты усиле- ния в пере- датчиках / приемни- ках, дБ	Примечание
AWS-0101	8,0-11,0	15	3,4	6	21/21	Обслуживаются четыре приемо- передающих АЭ. Формируется
AWS-0103	8,0-11,0	15	14,0	6	21/7	один луч в передающем и два луча в приемном режиме
AWS-0104	8,0-11,0	15	3,4	6	21/21	Обслуживаются четыре приемо-
AWS-0105	8,0-11,0	15	14,0	6	21/7	передающих АЭ. Формируется олин луч в режиме приемо-пере-
AWS-0108	27,5-30,0	9	5,0	5	24/31	дачи
AWS-0112	17,7-20,2	_	3,4	5	-/22	Обслуживаются восемь прием- ных АЭ. Формируется один луч в режиме приема
AWS-0113	27,5-30,0	12	-	5	22/-	Обслуживаются восемь переда- ющих АЭ. Формируется один луч в режиме передачи

Таблица 11. Характеристики управляющих кристаллов от компании Anokiwave

	Модель	Диапазон	Входная мощность, дБм	Диапазон р	регулирования	Шаг регулирования	
Фирма		частот, ГГц		фазы, град	амплитуды, дБ	фазы, град	амплитуды, дБ
Freescale Semiconductor	MMDS09254H	0,7-1,0	25	49	7,5	7	0,5
Freescale Semiconductor	MMDS25254HT1	2,3-2,7	25	49	49 7,5		0,5
Freescale Semiconductor	ale MMDS20254HT1		25	49	7,5	7	0,5
Peregrine Semiconductor	PE46120	1,8-2,2	29	87,2	7,5*	2,8	0,5*
Peregrine Semiconductor	PE46130	2,3-2,7	29	87,2	7,5*	2,8	0,5*
Peregrine Semiconductor	PE46140	3,4-3,8	29	87,2	7,5*	2,8	0,5*

Таблица 12. Характеристики микросхем для линеаризации мощных усилителей Дохерти, выпускаемых компаниями Freescale Semiconductor и Peregrine Semiconductor

* Во втором канале стоит фиксированный аттенюатор с нулевым ослаблением.

щем (AWS-0113) режимах. Все изделия выполнены по кремниевой технологии и питаются от напряжения 1,8 В. Потребляемая мощность передатчиков и приемников не превышает 1,8 Вт. Изделия предназначены для радиолокационных применений и спутниковых систем связи.

Схемы, обеспечивающие одновременную регулировку амплитуды и фазы, могут быть также использованы при линеаризации мощных усилителей. Так, для упрощения процесса настройки мощных усилителей Дохерти, которые применяются в передатчиках базовых станций, работающих по протоколам GSM, W-CDMA, UMTS и LTE, компания Freescale Semiconductor разработала три специализированные микросхемы (табл.12) с разными рабочими диапазонами частот. Все они построены по одной структурной схеме (рис.32), включающей в себя квадратурный гибридный мост

Рис.32. Структурная схема управляющего кристалла, используемого при линеаризации усилителей Дохерти

и управляемые кодами фазовращатели и аттенюаторы в каждом из двух каналов. В процессе настройки схемы управляются по SPI-интерфейсу.

Еще три микросхемы, предназначенные для настройки мощных усилителей в передатчиках, работающих по LTE-протоколу, выпустила компания Peregrine Semiconductor (см. табл.12). Отличие микросхем PE46120, PE46130 и PE46140 от изделий Freescale Semiconductor заключается в том, что управляемый аттенюатор в одном из каналов каждой микросхемы заменен фиксированным. В состав микросхем входят квадратурный гибридный мост, два 5-разрядных фазовращателя с диапазоном изменения фазы 87,2° и шагом перестройки 2,8°, один фиксированный (ослабление 0 дБ) и один перестраиваемый 4-разрядный цифровой

Фирма	Модель	Диапазон частот, ГГц	Фазовый сдвиг, град	Шаг уста- новки, град	Фазовая ошибка, град	IL, дБ	Время пре- ключения, мкс	Р _{вх. макс.} , дБм
Pasternack	PE82P5000	0,5-2,0	360	1,41	±10	13	<0,5	10
Pasternack	PE82P5001	8,5-11,0	360	1,41	±2	10	<0,5	13
Pasternack	PE82P5002	6,0-18,0	360	1,41	±15	12	<0,5	20
Pasternack	PE82P5003	32,0-37,0	360	1,0	±5	13	<0,5	-
Vaunix	LPS-202	1,0-2,0	360	1,0	±2,5	5	10	10
Vaunix	LPS-402	2,0-4,0	360	1,0	±2,5	5	10	10
Vaunix	LPS-802	4,0-8,0	360	1,0	±2,5	5	10	10
Vaunix	LPS-123	8,0-12,0	360	1,0	±2,5	5	10	10
Telemakus	TEP2000-4	1,0-2,0	400	0,25	-	4	-	6
Telemakus	TEP4000-5	2,0-4,0	460	0,25	-	5	-	6
Telemakus	TEP8000-6	4,0-8,0	410	0,25	-	5	-	6
Telemakus	TEP12000-6	8,0-12,0	390	0,10	-	6	-	10
Telemakus	TEP18000-6	12,0-18,0	380	0,10	-	6	-	6
Telemakus	TEP24000-6	18,0-24,0	460	-	-	-	-	6

Таблица 13. Характеристики программируемых фазовращателей с USB-управлением

аттенюатор с динамическим диапазоном 7,5 дБ и шагом перестройки 0,5 дБ. Частотный диапазон микросхем составляет 1,8-2,2, 2,3-2,7 или 3,4-3,8 ГГц. В результате использования этих микросхем удается повысить линейность, КПД, межпортовую развязку, увеличить до 35 дБм максимально допустимую входную мощность, повысить до 500-1000 В стойкость к электростатическим воздействиям, расширить до -40...105°C рабочий диапазон температур и до 2,3-5,5 В диапазон питающих напряжений, существенно поднять надежность и повторяемость характеристик линеаризованных усилителей. Итоговые зависимости вносимого ослабления от входа до второго выхода, а также зависимости фазовых сдвигов от входа до первого и второго выходов для микросхемы РЕ46140 представлены на рис.33а, б, в.

ПРОГРАММИРУЕМЫЕ ФАЗОВРАЩАТЕЛИ

Программируемые фазовращатели (ПФВ) – это совместимые (обычно по USB-интерфейсу) с компьютерами устройства, которые являются, по сути, измерительными приборами. В сочетании с другими программируемыми USB-изделиями (переключателями, аттенюаторами, усилителями, генераторами сигналов, векторными модуляторами, удвоителями частоты, измерителями мощности), выпускаемыми компаниями Pasternack, Vaunix, PMI, Telemakus, "Радиокомп" и др., они позволяют создавать измерительные исследовательские или учебные стенды, предназначенные для изучения проблем, связанных с устройствами формирования лучей, MIMO-системами, фазированными антенными решетками и многими другими задачами.

Программируемые фазовращатели (табл.13) могут быть реализованы с использованием цифровых и аналоговых фазовращателей. Например, ПФВ компании Pasternack (рис.34a) реализован по схеме на рис.15а с использованием цифрового 5-разрядного фазовращателя и аналогового фазовращателя отражательного типа. Это изделие обеспечивает фазовый сдвиг 360° с разрешением по фазе около 1,4° в диапазоне частот 32–37 ГГц. Время переключения фазовращателя не превышает 500 нс.

Семейство программируемых фазовращателей под торговой маркой Lab Brick (рис.34б), производимых компанией Vaunix, включает в себя четыре изделия, работающих в диапазонах частот 1–2, 2–4, 4–8 и 8–12 ГГц. Все фазовращатели обеспечивают максимальный фазовый сдвиг 360°, точность установки фазы составляет 1°.

Программируемые фазовращатели выпускает также компания Telemakus (рис.34в). Изделия этой фирмы доступны для диапазонов частот 1–2, 2–4,

оборудования.

АО НПП ЭСТО (Группа компаний ЭСТО) - объединение ведущих российских предприятий, специализирующихся на разработках, производстве, модернизации, продаже и сервисном обслуживании специального технологического

Направления деятельности группы «ЭСТО»

Разработка и производство технологического оборудования (лазерное, вакуумное, сборочное, нестандартное) и внедрение технологий

Организация поставок как отдельных единиц зарубежного технологического оборудования, так и комплексных законченных технологий «под ключ»

Комплексная и частичная модернизация российского и зарубежного технологического оборудования любой сложности

Сервисное обслуживание российского и зарубежного технологического оборудования

Проектирование и строительство производств микроэлектроники

Обучение специалистов заказчика

Технологический аудит производства

Группа компаний ЭСТО более 20 лет производит оборудование для микроэлектроники в собственном инженерно-производственном комплексе метражом в 5000 кв.м в г. Зеленограде Акционерное общество «Научно-производственное предприятие «Электронное специальное технологическое оборудование»

124460, Москва, Зеленоград, просп. Георгиевский, д. 5, стр. 1 тел.: (499) 729-77-51, (499) 479-12-39 info@nppesto.ru www.nppesto.ru

СВЧ-ЭЛЕКТРОНИКА

Рис.33. Экспериментальные зависимости вносимых потерь IL(f) для 16 устанавливаемых значений ослабления (0, 0,5, ..., 7,5 дБ) (а) и фазовых сдвигов Ф(f) в первом (б) и во втором (в) каналах для 32 значений кодов (0, 1, 2, ..., 31) устанавливаемого сдвига фазы (микросхема PE46140). Толстыми вертикальными линиями показаны границы рабочего диапазона частоты

4-8, 8-12 и 12-18 ГГЦ. Максимальный фазовый сдвиг в этих фазовращателях 380-460°. Точность поддержания фазы при 12-разрядном коде управления составляет 0,25°. Устройства реализуются на цифро-аналоговых фазовращателях, включающих в себя аналоговые фазовращатели отражающего типа, 12-разрядные цифро-аналоговые преобразователи и схемы линеаризации. Секции отражательных фазовращателей включаются последовательно. Поскольку в каждой из используемых секций максимальный фазовый набег составляет примерно 100-120°, для достижения максимального фазового сдвига нужны четыре секции. Зависимость фазового сдвига Ф от управляющего напряжения U_{упр.} в таком 4-секционном фазовращателе оказывается недостаточно линейной (рис.35а). С помощью индивидуального программного обеспечения (ПО), прилагаемого к каждому изделию, удается добиться строго линейного характера этой зависимости (рис.356). Объем флешпамяти составляет 0,5 Мб, что позволяет хранить не только программы линеаризации зависимости $\Phi(U_{vnn})$, но и ПО Windows.

Рис.34. Программируемые фазовращатели компаний Pasternack (a), Vaunix (б) и Telemakus (в)

ЭЛЕКТРОНИКА КОМПОНЕНТЫ ОБОРУДОВАНИЕ ТЕХНОЛОГИИ 31.10 - 02.1115-Я МЕЖДУНАРОДНАЯ ВЫСТАВКА РОССИЯ • МОСКВА • ЭКСПОЦЕНТР

www.chipexpo.ru

ПРИ ПОДДЕРЖКЕ:

ГК "Ростех" ГК "Росатом"

Министерства промышленности и торговли Российской Федерации Государственная Дума Федерального собрания Российской Федерации

Департамент радиоэлектронной промышленности

Департамент науки, промышленной политики и предпринимательства города Москвы Московская торгово-промышленная палата

Рис.35. Зависимости фазовых сдвигов Ф от управляющего напряжения в программируемых фазовращателях компании Telemakus до (а) и после (б) цифровой калибровки

Отметим также, что одновременное изменение фазы и амплитуды входного сигнала может быть реализовано путем последовательного включения программируемых по USB фазовращателя и аттенюатора (рис.36).

Большой спрос на программируемые USB фазовращатели связан с их низкой стоимостью и высоким уровнем технических характеристик, предопределенных постоянным совершенствованием используемых в них интегральных микросхем.

Таким образом, сегодня на рынке представлен широкий спектр твердотельных СВЧ-фазовращателей разных типов. При этом сохраняется интерес как

Рис.36. Последовательно включенные программируемые по USB фазовращатель TEP8000-6 и аттенюатор TEA8000-6, обеспечивающие управление фазой и амплитудой входного сигнала к модульным конструкциям твердотельных фазовращателей, разработанным в предыдущие годы, так и к интегральным изделиям, характеристики которых стремительно прогрессируют. С учетом приведенной в статье информации можно подобрать фазовращатели, оптимальные для решения различных задач.

ЛИТЕРАТУРА

- Mengyi C., Yang L., Jiaxing W., et al. Ka-Band full-360° analog phase shifter with low insertion loss // Journal of Semiconductors. 2014. Vol. 35. № 10. PP. 105005–1– 105005–5.
- Ku B.-H., Inac O., Chang M., et al. A High-Linearity 76-85 GHz 16-Element 8-Transmit/8-Receive Phase Array Chip with High Isolation and Flip-Chip Packaging.- IEEE Trans. MTT. 2014. Vol. 62. № 10. PP. 2337-2356.
- 16. Kim Y., Kim S., Lee I., et al. A 220-320 GHz Vector-Sum Phase Shifter Using Single Gilbert-Cell Structure with Lossy Output Matching.-IEEE Trans. MTT. 2015. Vol. 63. № 1. PP. 256-265.
- 17. Mohsenpour M.-M., Saavedra C.E. Variable 360° Vector-Sum Phase Shifter with Coarse and Fine Vector Scaling.-IEEE Trans. MTT. 2016. Vol. 64. № 7. PP. 2113–2120.
- Wu P.-S., Chang H.-Y., Tsai M.-D., et al. New Miniature 15–20 GHz Continuous-Phase/Amplitude Control MMICs Using 0.18-µm CMOS Technology. – IEEE Trans. MTT. 2006. Vol. 54. № 1. PP. 10–19.

- 4 изолированных канала
- Измерения в 1- и 3-фазных сетях с пробником 1000 В катІІІ
- Переключаемое разрешение АЦП: 12 бит или 14 бит

 \bigcirc

• Полоса пропускания: 20 МГц

Современные средства измерений

Аки

Серия АКИП-72000 (MSO) 💿

Каналы: 2, 4 (+ 16 цифровых) Полоса пропускания: до 100 МГц Частота дискретизации: 1 Гвыб/с Память: до 128 МБ

Серия АКИП-75000

Каналы: 2, 4 Полоса пропускания: до 200 МГц Частота дискретизации: 1 Гвыб/с Память: до 512 МБ АЦП: 8... 16 бит

Серия АКИП-73000 (MSO) 🕥

Каналы: 2, 4 (+ 16 цифровых) Полоса пропускания: до 200 МГц Частота дискретизации: 1 Гвыб/с Память: до 512 МБ

Серия АКИП-76000

Каналы: 4 Полоса пропускания: до 1 ГГц Частота дискретизации: 5 Гвыб/с Память: до 2 ГБ

Серия АКИП-74000 🕥 Каналы: 2, 4, 8

Полоса пропускания: до 20 МГц Частота дискретизации: 80 Мвыб/с Память: 256 МБ АЦП: 12 бит, 16 бит

Серия АКИП-4112 💿 стробоскопические осциллографы

Каналы: 2, 4 Полоса пропускания: до 25 ГГц Частота дискретизации: 1 Мвыб/с Память: 32 кБ

 \bigcirc

119071, **г. Москва**, 2-й Донской пр., д. 10, стр. 4; тел.: +7 (495)777-5591; факс: +7 (495) 640-3023 196084, **г. Санкт-Петербург**, ул. Цветочная, д. 18, лит. В, офис 202; тел./факс: +7 (812) 677 7508 620130, **г. Екатеринбург**, ул. Авиационная, д. 80; тел./факс: +7 (343) 317-39-99; ek@prist.ru